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Group Equivariant Deep Learning

Lecture 3 - Equivariant graph neural networks

Lecture 3.7 - Gauge equivariant graph NNs
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Recall lecture 2.4

Feature field and induced representation

We call f : RY — R% a feature vector field, or simply a feature field, if its

codomain transforms via a representation p(h) of H

domain  transforms via the action g1 of G=(RY +)xXH

Representation p defines the type of the field, and together with the group action of G = (R%, + ) X H defines the
induced representation
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COORDINATE INDEPENDENT CONVOLUTIONAL NETWORKS

ISOMETRY AND GAUGE EQUIVARIANT CONVOLUTIONS ON RIEMANNIAN MANIFOLDS
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ABSTRACT

Motivated by the vast success of deep convolutional networks, there is a great interest in
generalizing convolutions to non-Euclidean manifolds. A major complication in compar-
ison to flat spaces is that it is unclear in which alignment a convolution kemel should be
applied on a manifold. The underlying reason for this ambiguity is that general manifolds
do not come with a canonical choice of reference frames (gauge). Kernels and features
therefore have to be expressed relative to arbitrary coordinates. We argue that the par-
ticular choice of coordinatization should not affect a network’s inference — it should be
coordinate independent. A simultaneous demand for coordinate independence and weight
sharing is shown to result in a requirement on the network to be equivariant under local
gauge transformations (changes of local reference frames). The ambiguity of reference
frames depends thereby on the G-structure of the manifold, such that the necessary level
of gauge equivariance is prescribed by the corresponding structure group G. Coordinate
independent convolutions are proven to be equivariant w.r.t. those isometries that are sym-
metries of the G-structure. The resulting theory is formulated in a coordinate free fashion
in terms of fiber bundles. To exemplify the design of coordinate independent convolutions,
we implement a convolutional network on the Mobius strip. The generality of our differ-
ential geometric formulation of convolutional networks is demonstrated by an extensive
literature review which explains a large number of Euclidean CNNs, spherical CNNs and
CNNs on general surfaces as specific instances of coordinate independent convolutions.
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Gauge Equivariant Convolutional Networks and the Icosahedral CNN

Taco S. Cohen "' Maurice Weiler * Berkay Kicanaoglu"* Max Welling '

Abstract

The principle of equivariance to symmetry trans-
formations enables a theoretically grounded ap-
proach to neural network architecture design.
Equivariant networks have shown excellent per-
formance and data efficiency on vision and med-
ical imaging problems that exhibit symmetries.
Here we show how this principle can be extended
beyond global symmetries to local gauge transfor-
mations. This enables the development of a very
general class of convolutional neural networks on
manifolds that depend only on the intrinsic geom-
etry, and which includes many popular methods
from equivariant and geometric deep learning.

We implement gauge equivariant CNNs for sig-
nals defined on the surface of the icosahedron,
which provides a reasonable approximation of the
sphere. By choosing to work with this very regu-
lar manifold, we are able to implement the gauge
equivariant convolution using a single conv2d call,
making it a highly scalable and practical alterna-
tive to Spherical CNNs. Using this method, we
demonstrate substantial improvements over pre-
vious methods on the task of segmenting omnidi-
rectional images and global climate patterns.

1. Introduction

By and large, progress in deep leaming has been achieved
through intuition-guided experimentation. This approach
is indispensable and has led to many successes, but has not
produced a deep understanding of why and when centain
architectures work well. As a result, every new application
requires an extensive architecture search, which comes at a
significant labor and energy cost.

“Equal contribution 'Qualcomm AI Research, Amsterdam,
NL. “Qualcomm-University of Amsterdam (QUVA) Lab. The-
ory co-developed by Cohen & Weiler. Correspondence to:
Taco S. Cohen <taco.cohen@ gmail.com>, Maurice Weiler
<m.weiler@uva.nl>.

Proceedings of the 36'" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).
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Figure 1. A gauge is a smoothly varying choice of tangent frame
on a subset [V of a manifold M. A gauge is needed to represent
geometrical guantities such as convolutional filters and feature
maps (i.c. ficlds), but the choice of gauge is ultimately arbitrary.
Hence, the network should be equivariant to gauge transformations,
such as the change between red and blue gauge pictured here.

Although a theory that tells us which architecture to use for
any given problem is clearly out of reach, we can neverthe-
less come up with general principles (o guide architecture
search. One such rational design principle that has met with
substantial empirical success (Winkels & Cohen, 2018; Za-
heer et al., 2017; Lunter & Brown, 2018) maintains that
network architectures should be equivariant to symmeltries.

Besides the ubiquitous translation equivariant CNN, equiv-
ariant networks have been developed for sets, graphs, and
homogeneous spaces like the sphere (see Sec. 3). In each
case, the network is made equivariant to the global symme-
tries of the underlying space. However, manifolds do not
in general have global symmetries, and so it 1s not obvious
how one might develop equivariant CNNs for them.

General manifolds do however have local gauge symmetries,
and as we will show in this paper, taking these into account
is not just useful but necessary if one wishes to build mani-
fold CNNs that depend only on the intrinsic geometry. To
this end, we define a convolution-like operation on general
manifolds M that is equivariant to local gauge transforma-
tions (Fig. 1). This gauge equivariant convolution takes as
input a number of feature fields on M of various types (anal-
ogous to matter fields in physics), and produces as output
new feature fields. Each field is represented by a number of
feature maps, whose activations are interpreted as the coef-
ficients of a geometrical object (e.g. scalar, vector, tensor,
etc.) relative to a spatially varying frame (i.e. gauge). The
network is constructed such that if the gauge is changed,
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GAUGE EQUIVARIANT MESH CNNS
ANISOTROPIC CONVOLUTIONS ON GEOMETRIC GRAPHS
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Qualcomm Al Rcsearcl-{r QUVA Lab Qualcomm Al Research
University of Amsterdam University of Amsterdam
Max Welling
Qualcomm Al Research
University of Amsterdam

ABSTRACT

A common approach to define convolutions on meshes is to interpret them as
a graph and apply graph convolutional networks (GCNs). Such GCNs utilize
isotropic Kernels and are therefore insensitive to the relative orientation of vertices
and thus to the geometry of the mesh as a whole. We propose Gauge Equivariant
Mesh CNNs which generalize GCNs to apply anisotropic gauge equivariant kernels.
Since the resulting features carry orientation information, we introduce a geometric
message passing scheme defined by parallel transporting features over mesh edges.
Our experiments validate the significantly improved expressivity of the proposed
model over conventional GCNs and other methods.

1 INTRODUCTION

Convolutional neural networks (CNNs) have been established as the default method for many machine
learning tasks like speech recognition or planar and volumetric image classification and segmentation.
Most CNNs are restricted to flat or spherical geometries, where convolutions are easily defined
and optimized implementations are available. The empirical success of CNNs on such spaces has
generated interest to generalize convolutions to more general spaces like graphs or Riemannian
manifolds, creating a field now known as geometric deep learning (Bronstein et al., 2017).

A case of specific interest is convolution on meshes, the discrete analog of 2-dimensional embedded
Riemannian manifolds. Mesh CNNs can be applied to tasks such as detecting shapes, registering
different poses of the same shape and shape segmentation. If we forget the positions of vertices, and
which vertices form faces, a mesh M can be represented by a graph G. This allows for the application
of graph convolutional networks (GCNS) to processing signals on meshes.

“Equal Contribution
'Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.

9
Figure 1: Two local neighbourhoods around vertices p and their representations in the tangent planes 7, M.
The distinct geometry of the neighbourhoods is reflected in the different angles 6,,,, of incident edges from
neighbours g;. Graph convolutional networks apply isotropic kernels and can therefore not distinguish both
neighbourhoods. Gauge Equivariant Mesh CNNs apply anisotropic kemnels and are therefore sensitive to
orientations. The arbitrariness of reference orientations, determined by a choice of neighbour gu, is accounted
for by the gauge equivaniance of the model.
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ABSTRACT

Motivated by the vast success of deep convolutional networks, there is a great interest in
generalizing convolutions to non-Euclidean manifolds. A major complication in compar-
ison to flat spaces is that it is unclear in which alignment a convolution kemel should be
applied on a manifold. The underlying reason for this ambiguity is that general manifolds
do not come with a canonical choice of reference frames (gauge). Kernels and features
therefore have to be expressed relative to arbitrary coordinates. We argue that the par-
ticular choice of coordinatization should not affect a network’s inference — it should be
coordinate independent. A simultaneous demand for coordinate independence and weight
sharing is shown to result in a requirement on the network to be equivariant under local
gauge transformations (changes of local reference frames). The ambiguity of reference
frames depends thereby on the G-structure of the manifold, such that the necessary level
of gauge equivariance is prescribed by the corresponding structure group G. Coordinate
independent convolutions are proven to be equivariant w.r.t. those isometries that are sym-
metries of the G-structure. The resulting theory is formulated in a coordinate free fashion
in terms of fiber bundles. To exemplify the design of coordinate independent convolutions,
we implement a convolutional network on the Mobius strip. The generality of our differ-
ential geometric formulation of convolutional networks is demonstrated by an extensive
literature review which explains a large number of Euclidean CNNs, spherical CNNs and
CNNs on general surfaces as specific instances of coordinate independent convolutions.
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Table 6: Classification of convolutional networks in the literature from the viewpoint of coordinate independent CNNs. Bold
lines separate different geometries. The affine group equivariant convolutions on Euclidean spaces Ea (rows 1-26) are reviewed
in Section E Section discusscs GM -convolutions on punctured Euclidean spaces E4\{0} = S§“ *xR* (rows 27-30).
Details on spherical CNNs (rows 31-36) are found in Sccdon@ The models in rows (37-41) operate on general surfaces,
mostly represented by triangle meshes; see Scction@ The last two lines list our Mabius convolutions from ScctionE] Ts. R
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Abstract

Feature descriptors play a crucial role in a wide range
of geometry analysis and processing applications, includ-
ing shape correspondence, retrieval, and segmentation. In
this paper, we introduce Geodesic Convolutional Neural
Networks (GCNN), a generalization of the convolutional net-
works (CNN) paradigm to non-Euclidean manifolds. Our
construction is based on a local geodesic system of polar
coordinates to extract “patches”, which are then passed
through a cascade of filters and linear and non-linear oper-
ators. The coefficients of the filters and linear combination
weights are optimization variables that are learned to min-
imize a task-specific cost function. We use GCNN 1o learn
invariant shape features, allowing to achieve state-of-the-art
performance in problems such as shape description, retrieval,
and correspondence.

1. Introduction

Feature descriptors are ubiquitous tools in shape analysis.
Broadly speaking, a local feature descriptor assigns to each
point on the shape a vector in some multi-dimensional de-
scriptor space representing the local structure of the shape
around that point. A global descriptor describes the whole
shape. Local feature descriptors are used in higher-level
tasks such as establishing correspondence between shapes
[25], shape retrieval [¥], or segmentation [43]. Global de-
scriptors are often produced by aggregating local descriptors
e.g. using the bag-of-features paradigm. Descriptor construc-
tion is largely application dependent, and one typically tries
to make the descriptor discriminative (capture the structures
that are important for a particular application, e.g. telling
apart two classes of shapes), robust (invariant to some class
of transformations or noise), compact (low dimensional),
and computationally-efficient.

Previous work Early works on shape descriptors such
as spin images [ 9], shape distributions [*4], and integral
volume descriptors [12] were based on extrinsic structures
that are invariant under Euclidean transformations. The fol-

*equal contribution

Pierre Vandergheynst!

lowing generation of shape descriptors used intrinsic struc-
tures such as geodesic distances [15] that are preserved by
isometric deformations. The success of image descriptors
such as SIFT [71], HOG [!?], MSER ["7], and shape con-
text [2] has led to several generalizations thereof to non-
Euclidean domains (see e.g. [49, 14, 24], respectively). The
works [1 1, 2¥] on diffusion and spectral geometry have led
to the emergence of intrinsic spectral shape descriptors that
are dense and isometry-invariant by construction. Notable
examples in this family include heat kernel signatures (HKS)
[45] and wave kernel signatures (WKS) [1].

Arguing that in many cases it is hard to model invariance
but rather easy to create examples of similar and dissimilar
shapes, Litman and Bronstein [29] showed that HKS and
WKS can be considered as particular parametric families
of transfer functions applied to the Laplace-Beltrami oper-
ator eigenvalues and proposed to learn an optimal transfer
function. Their work follows the recent trends in the image
analysis domain, where hand-crafted descriptors are aban-
doned in favor of learning approaches. The past decade in
computer vision research has witnessed the re-emergence
of “deep learning™ and in particular, convolutional neural
network (CNN) techniques [17, 27], allowing to learn task-
specific features from examples. CNNs achieve a break-
through in performance in a wide range of applications such
as image classification [20], segmentation [1(], detection
and localization [*%, 47] and annotation [16, 21].

Learning methods have only recently started penetrating
into the 3D shape analysis community in problems such as
shape correspondence [79, 37], similarity [20], description
[29, 47, 12], and retrieval [30]. CNNs have been applied
to 3D dala in the very recent works [4%, 44] using standard
(Euclidean) CNN architectures applied to volumetric 2D
views shape representations, making them unsuitable for
deformable shapes. Intrinsic versions of CNNs that would
allows dealing with shape deformations are difficult to for-
mulate due to the lack of shift invariance on Riemannian
manifolds; we are aware of two recent works in that direc-
tion [, 5].

Contribution In this paper, we propose Geodesic CNN
(GCNN), an extension of the CNN paradigm to non-
Euclidean manifolds based on local geodesic system of coor-
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ABSTRACT

Motivated by the vast success of deep convolutional networks, there is a great interest in
generalizing convolutions to non-Euclidean manifolds. A major complication in compar-
ison to flat spaces is that it is unclear in which alignment a convolution kemel should be
applied on a manifold. The underlying reason for this ambiguity is that general manifolds
do not come with a canonical choice of reference frames (gauge). Kernels and features
therefore have to be expressed relative to arbitrary coordinates. We argue that the par-
ticular choice of coordinatization should not affect a network’s inference — it should be
coordinate independent. A simultaneous demand for coordinate independence and weight
sharing is shown to result in a requirement on the network to be equivariant under local
gauge transformations (changes of local reference frames). The ambiguity of reference
frames depends thereby on the G-structure of the manifold, such that the necessary level
of gauge equivariance is prescribed by the corresponding structure group (G. Coordinate
independent convolutions are proven to be equivariant w.r.t. those isometries that are sym-
metries of the G-structure. The resulting theory is formulated in a coordinate free fashion
in terms of fiber bundles. To exemplify the design of coordinate independent convolutions,
we implement a convolutional network on the Mobius strip. The generality of our differ-
ential geometric formulation of convolutional networks is demonstrated by an extensive
literature review which explains a large number of Euclidean CNNs, spherical CNNs and
CNNs on general surfaces as specific instances of coordinate independent convolutions.
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