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AEBSTRACT

[nc.uding covariant information, such as position. force, velocity ar spin 1s impor-
laal 1 rmany esss incompulaional physics and chemistcy. We nitodwee 3 ecrable
E(3) Equivariart Graph Neural Notworks (SEGNNs) that geacralise cquivariant

graph networks, such that node and edge attributas are not restricted to invariant

Classic point convolutions

{Lecture 1.7: regular g-convs on homogensous spaces)

(Lecture 2: steerable g-convs)
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invariant Message Passing NNs

{Lacture 3)

mU = MLP(fp fs"X] — xi”)

wealars, hat czn contzin covariant mbormanion, snch ag vectors or tensors. Thig
model. comrposed of steerable MLPs, 1s able to incorporate geometric and physical
information ix buth the messaye ad update functons. Through the defimten of
stecrable node attributes, the MLPs previde a new class of activation functions
for general use with st2erable festure fielcs. We discuss ours and related work
throng the lens ot eguivariant nondinear comolunons, which tu-ther allows ns 1o
pin-pont the successful components of SEGNNs: non-linzar message aggrezat.on
improves upon classic linear (stecrablke) 2oint convolutions; sievialle messages
improve upon recent cquivariart graph networks that sead mvaran: messages. We
demonstrate the effectivaness of our method on several tasks in computational

(Lecture 3)
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physics and chemistry and pravide eytensive abhlation smdies

1 [INTRCDUCTION

The suecess of Convolutional Nearal Networks (CNN:) (LeCun et al|, 1998;/2015; Schmidhuber,
2015; Krizhevsky eta’., 2012) is a key factor “or the rise of deep leamning, attributed to their capability
nf exploiting translation symmetries, herahy intrviucing a strong inductiva hias. Recen” wnrk has
shown tat designing CNINs o explol: addidonal syirmetrdes via groap corvoludons has even further
axcreased el pecfozmarce  (Cobea & Welling, 2016, 2017, Worzall et al., 2027, Coliea e, al.,
2018; Kondor & Trivedi, 2018; Weiler at al., [ 201%; Bekkers et al | 2018 Bekkers, |2019; Weilar &
C2sa, 2016) Graph neural networks (CNNs) and CNNs are closely related to 2ach cther viz their
aggregatinn of local information. More precisely, CNNs czan be formnlated as message passing
-ayzrs (Gllmer 2t al |, 2017) based on a sum aggregatcn of messages that are obralned by relative
positior-dependent linear trensfarmations of neighbourirg ncde features. The power of message
passmn layers is, however, that nods features cre transformed and propagated in a highly non-lincar
manner. Equivariant GNNs have b2en proposed bafore as either Poin:Conv.type i(Wu et al | 2319;
Kristn™ ot al | 2017) implementations of stzerahle [Thomas ef al | 20 % Andarson et al | 2019 Fiochs
et el., 2020) ar regular group canvoludions (Finzl e &l | 2020). The most impartant ccmpenent in
29 these methods arc the eonvolution leyers. Althougk powerful, such leycrs enly ipscudd'| lincarly
transform the graphs ard non-lirearity i only obtaired via point- wise activations

'Methods such as SE(2).transformers (Fuchs et al | [2020) and Cormorant [Andsmon et 2l 2019) nzlide an
mput-dependent aveaticn componeat thal augments the convolutions.
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Table 2: Performance compgrison ¢

Error (MAE) between modf£I predic

Task Qo
Units bohr?

Ae

EHOMO
meV

NMP 092
SchNet *
Cormorant
L1Net
LieConv 084
TEFN 223
SE(3)-Tr.
DimeNet++ *
SphereNet *
PaiNN * 045
EGNN 071

4
-+
34
46
30
40
35
24
23
27
29

SEGNN (Ours)
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Linear vs Non-linear & Regular vs Steerable

Generalizing Convolutional Neural Networks for Equivariance

to Lic Groups on Arbitrary Continuous Data

Marce Finei Sumuel Slanlon’ Pauvel Eznailoy ! Amdrew Gordon Yvilson

Abstract

The translation equivariance of cernelutonal ley
ers cnables convolational nearel retworks to gen-
erali2e well on imaza problems. Watk translation
cquivar.ance xovides a powerfal inductive bias
for images, w2 often additonally desire equivari-
ance to other tansformations, such as rotations,
especially for ron-image data We prodose a gen-
crel method to construct a corvolutional Jayer
That I8 equinariant 1o Trarsfrmations from any
specificd Lic zroup with a surjective expanential
mep. Incurporating coLivarknes 0 & ney group
requices implermenting orly the group expenential
and lozarithun maps, enabling rapic xokdyding.
Showcasing tae surphesty and ganarclity o- our
method, we apply (the same mode] architecture w
images, ball and stick moleculor data, and Hamul
tonian dveamdcal systzus. For Herultonian sys-
fems, the equivasianca af our models 15 especially
impactfal, kading to exact conservetior of lincar
andl amgullar momeninm

1. Introduction

Syvaunetry pervades the natural world  The same law of
gravatation governs a game of caich, the arsits ot our plan.
ets. and the “omarion of galaxies. It is precisely because
of the order of the anaverse that we can hegpe 10 1aderstand
it One¢ we stared to understand the symmettics inherent
i physical laws, we coud predsct behavior (n galaxees b1l
lioas of light-yzars away by studving oar own local region
or rfima and Ipace For stanisrical modals ta achieve rheir
full petential, it i3 cssential to incocporets out knowledze
of narueally nernsring symmerries inm e design or a'go-
rithme and architectures. An example of this principla is
the translation @ pevamanee of cirvolmiona’ ayems in nen-
rel netwotks (LeCuan et al., 1995): when an input (e.g. an

‘New York Univecsity. Correspendence to: Mare Finz
<maf$20@ nvuedn>.

Precesdings of the 37" International Conjerence on Mackine
Learming, Online, PMLR 119, 202). Cepyr.ght 2020 by the au
thoris).

Figure [. Many modalitics of spatm! data cc not ke on a gnd, but
sull possess gk synuncles, We propusc @ sugle medel
m kearr from ennrnnons snatal dera mar csn b spscialized
reipect 4 givea toalinuous symmeiry groan.

image! s wanslated, the outont of a convolutional layer is
tranckated 1a the same way.

Group theory provides a mechanism Lo rezscn about syrune-
try erc cqaiveriance. Coowolutional leycts arc cquivasiant
W ramslations, wd are o special case o7 group convolu-
tion. A group convolution L€ a geneeal L1a2ar iransiomation
cquivaiant to a given group, used in grovp squivariart con-
volutional retwerks (Uoken aad Welling, 201540,

In this paper. we develop a general [ramewcrk Jor egan-
griant models on arbitrary continucus (spatial) data repre-
sented as coordinaees and vakees {(x,, £2)]7 . Spetel deta
18 & brocd categary, includirg bal and shck repeesertalions
of molecudes, the coorcinaes vl a dynamicul system, and
mages (shown in Figure 1), When the mpute or 3 oup
clements iz on e grid (c.g.. image date) oae can simgply
enumerae the values aof the convoutional <arnel at 2ach
group slement. Dut in order o exrend to contiruwous data,
we defre The convohmianal Verna a3 a continmons Maction
on the groap paransctzrized by a newral ietwars

We consuder the large clags cf cortinuous groups known as
Lic zroups. Inmast cases, Lic groups can be paraystenzed
interms of a vectar space of 1nimteiimal generators (the Ly
algebra) via the Jogaritam and exponential maps. Many usc-
mil ransformarions are Lie groups, including ransizrions,
wotazions, and scalings. W2 propose LicConv, a convolu-
Tional laver rhat can he mada equivariart i a given I ia
group by defining exp and log maps. We demonstrate ths
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LicTransformer: Equivariant Sclf-Attention for Lic Groups

Michael Hutchinson ™' Charline Le Lan ™' Sheheryar Zeidi ™’
Emdien Dupont’ Yee Whye Tekh ' Hyunjik Kim’

Abstract

Grouy cquivarant peusal sclvorss arc used as
bunilding hacks o7 gmap iavariznt aenral net-
woths, which have been slown 1 iuprove geaa-
abisaton performance and data efficiency tarough
princ.pled peremerer shanng. Such warks have
mostly focised on group equivarmant cenvolulions,
building on the result that group eqaiveriant lin-
ear maos ere necescanly convelutions  Ir this
work, we extend the scope of the Iterature to self-
usention, tha. bs canciging es a promisent bailding
block of deep learning modeli. We prepose the
Lielransrorner, an architeciure COUI.FOSCCI
of LicEclfhztention layem that are equiv

ananl o arbitrary L.e groups anc their discrete
subgroups. We damenstrate the senerality of our
appeoach by showing expenmental results that are
competitive o bescline methods on 3 wide range
of tades skape enrnling an soint clande, malee-
ular property rzgression and modelling paticle

trajactanies under Hurmlioatan dynamecs.

1. Introvductinn

Group equivanant nzurel netwerks are usefu! architecures
for probleris with symmetries that can he deseriaed in terms
<f a group [in the mathenzatical sense). Convolulicnal neural
resworks (CNNg) are a special cass that deal with transla
tionzl symmetry, in that whea the input © a cenvalutional
layer 13 translated, tac cutpatis also ranslated. This prop-
erty 1s known as translation eguivaciance, and oiters a use-
ful isductive bias fur perveption iasks whicl usually bave
t=anslational syrimetry Consrriring a linear layer to ohey
1ais symmetry, resulting in 2 covolutional layer, greatly re-

"Equal contribution, with alphabetical crcering. S:e Ap-
pead x A for detailed costributions DPleasc cite as: [[lutchin-
son, Le Lan, Zad et al. 2000 'Deparmeat of Statizies
Univerdty of Oxford, 1T “NDeepMind  TTK Conresponderce
to: Michoel Hutzhinioa <huichinsonmicheel john@ gmeil come >,
Charine L2 Lan <charline lalan@sians.ox. acu<>, Shehervar
Zaidi <sheh.radi96@hotmail com>.

Proceedingy of the 38 lnemutivral Confer=nze on Mudhe

Learnirg. PMLR 139, 2021, Copynght 2021 ay the authon(s).

cuces the number of parameters and corputational cost
This has led 1o the success of CNNs in mubiple domains
such as computer vision (Knzheviky etal |, 2012) asd aadic
(Graves & Jailly, 2014, Following on from this sLccess,
taere has beer o growing literature on the study of groap
equivariant CNNs (G-CNN;) that generalise ONNs to deal
willrothies types of synuncuies beyond aeanlatsons, suchas
mmbons and reflestions

Mos: works ¢n greup cquivanaat NNs deal with CNN:s
1e lnzar maps with shared weights cemposed with point-
wise no-luzaiies, bailding ou Gie resalt tiat group cquav-
ariart linear reaps (with mild assumptions) are necessarly
convoludons (Kordor & Trivedi, 2018; Cohen et al., 2019,
Bekkers, 2020) However there has been htle work on
ron-limear group equivariant building tlecks. In this paper
we exlead group equivaniance to self attenticn (Vaswen:
et al. 2017), a non-trivial nor-linzar map. that has become
a preminent building block of deep learning models in var-
1ns data madaliniss, axh as natiral-languaze procescing
(Vaswani et al., 2017; Browa =t al., 202(), compuer vi-
sien (Zhang e al,, 2019; Parmar e: 2., 2019b), reinforce-
renl leaming (Pansoito et &l., 2020), aad audio geacration
(Haang et al., 2019)

We thus propose LielIransforrer, a group in-
vanian.  Trunsformer built from  zrowp  equivanent
LieseltA-tention layers It uses a lifing based
approech, that relaxcs consiramts on the attentien module
compared to approaches without afting. Cur method 1¢
applicable to Lic groups and their disarcte subgroup:
(= 3 cychiz gronps (7, and dibedral gmmps 7.0 acting
i homwogeucous spaces. Ow work 1s vary much i the
spiri: of Finz: et al. (2020), our main basslns, but for
group equivarign! self-attention insiead of corvolutons.
Ameng works tha: deal with equivariant self atteniion, we
are tae hirst to prepase a methodology for general groups
and domamns (unspecified to ZD mmages (Romero ct al,
2000; Ramera & Cordonnier, 277211 or 3D pornt elonds
(Fuclis et el 2020)). Wz danonsuate U geaaality of cus
approzeh thrangh strong perfarmarce an a wide varety of
tasks, narely shape counting or poin: clouds, molescular
property segression and modelirg particls trajsctories
under Hamiltanias dynamics.
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Attentive Group Equivariant Convolutional Networks

David W. Romero ' Erik 1. BekKers © Jakub M. Tomczak' Mark Hoogendoomn *

Ahstract

Although group coavelutional networks are able
to leam powerful rearesantations based cn sym
weetey pactewns. they lack eaplicit means to leam
meaniagful relationships among them ez, rela-
tive pusitions and poses’. I this paper. we present
allentive groyp equivarianl comvo'ulions. a gen-
erahrztion of the 2 onp convolutior, 1n which
atrenting 13 applied danng the sourse af coavo-
lution to accentuate meaningful ivmmetry com.
binations and sappress non plausible. mizlead
ing enca. We indicate that pesor werk an visual
atention can be desciibed as special cases of
our prooused [mamewoek and show empirically
that our arfenlive group eguivariant convolu'ional
netwnrks corsistently anperform corventinnal
gronp convalitinaal nerworks on kenchmask im.
age datasets. Simultaneously, we provide inter.
pretability to the leamed cencapts thcugh the
visuelization o7 squivariant attzatior mans.

1. Introadnction

Coavolutional Neural Networks (CNN3) (LeCun ot 2l
1989) have showr mpressive pecformance in a wide ve-
riety of domains. The developinents of CNNs as well as of
mamy uther machine learning approaches have bezn fucled
Ay minniors and inzigh's info the compesahan and merfac
operands of maltiple HSiologiczl systems (Werthzimer. [938;
Biecermsan [987; Dalahunt & Kuiz, 2019 Blake & Lee,
2005; Zhacping, 2C11; Delahunt & Kutz, 2019). Though
CINNs have echicved remarkable perfermanee inercasss on
several benchivark problems, their taiviag efficicncy as
well as geacralization capabilities age still open for incprove-
mer. One cenezpt being exploiled for iy purpose is thet ol
sguivariarce. again drewing iaspiration frorr human Heings.

Humzns are abl2 to identify “zmiliar objects deipite modifi-

"Wrijc Universitcit Amsterdam, “Uridversity of Amsterdam,
The Metherland:. Comrespondence to: David W Rcomero
~d.w.remeroguzman @vu.nl >,

Procvedingy of (ue 37" dnternasiona Counference on Mucnine
Learing. Oahae, PMLR 119, 2020. Copyrizht 2020 by the ac
kor(s).
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Flgure 1. Meaningfu! relatorsaips amcng objexXt symmetries.
Though every r£gure IS camposed by the same ¢lements, ondy
2 oulermost ecanmples resembls faces. The reletve pasidons,
oricalatarsy ad scaler of domes 1 the ncrmwst eaanples do
et any iwcanieg ] face conporinon aal lepee, 2lwakd
be kabelked s suci Buitupon Fig. | [iom Sdywuzecs (2000)

cat:ons in location, size, viewpoint, lighting conditions and
background (Eruce & Humphravs, 1931). In addit:on, we
do not just recogrize them batere adle o describe in deteil
the type and amount of modification applic 1o theu as well
(von Helmholtz, 1868; Cassirer, 1944; Schmidl et 2l., 20161
Famivariarce i< srangly relrend iy the idea af sumoawtrici'y
Az these mochihcanang dn nof modily the asgence nt the
underlying odject, they should be teated (and l2amed) as
a sngle concept. Recently, several assroaches have em
brazed these ideas 1o precerve symmeirnee including tarela
tions (LeCun et al., [5€9), planer rotations (Diclemen ctal,
2016, Marcos etal,, 2017, Wousrall & al, 2017, Weiles et al.,
2018b; Li etel, 20.8, Cheng ct al., 2018, Hoogeloom et al,,
2018 Bekkers et al.. Z018: Veeling e al.. 2018: Lenssen
etal, 20X Smatsef 4 M0L), sphescal rtatons [Cohen
etal, 2018 Wocrall & Brostow, 200 Weileretal., 201¥a,
Thomas et al., 2018; Cohen et al, 2019b), scaling (Mar
cos etal, 2D18; Worrall & Welling, 2019 Scenovik et al.,
2020) and gencral symmetry zroups (Cohen & Welling,
201€a; Kondor & Trivedi, 2018, Weiler & Cesa, 2019, Co-
her et al., 2019, Bckkers, 2020, Romero & Hoogendoowm,
202C; Vensatreman et 2l., 2020).

While granp convolntional networks are ahla fo learn poyw.
erful rearesentatiors based on symmetry patierns, they lack
ary explicit means to learn meaninzful relatioadhipe cmong
then, &g, relaiive positions, oreataions and scales Fig. 1)
In this peper, we deaw inspitatioa foom anothe: peorising
develcpent in the machine leaming domain croven by neu-
rascience and 2sychology (eg., Pashler (2016)). awrenrion,
10 learmn such reladenships. The notor of atkervion is reated
10 the idea tat nof all enmponents o7 an inpal signal are per
re ecually ralevant for a particular task. As a consegaence,

2021
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GROUP EQUIVARIANT
STAND-ALONE SELF ATTENTION FOR VISION

David W. Romero Jean Baptiste Cordennier
Vry: Unovemssstenl Amsterdem Ecole Polytachnique Fédérle de Lausanre (EPFL)
dom.zuomz_vyuzunan@ueu, nl 1ean-bsrtiste.corccnniarfeprl.ch

ABSTRACT

We provide a general s2ifantentisn foemulation o impose group equivariance o
arbitrary syurelry zroaps. Ths 1s achieved oy delinmg posianal encodings that
ase invasien: 10 the acticn of the group considerzd. Since the zroup acls onthe posi-
tional encoding directly, group equavariont celf atention networis (CSA-Noze) are
Steerakle by nature. Our experiments on visoon benchmargs demonstrale corsisteat
iaprovenents of G3A-NeLs over nos-cquivariant scli-aticution neiwarks

|  INTRODUCTION

Rocent advences i Natural Language Processing have besn lagely atuibuted o the tise of e
Transformer (Vaswani et al, 2017). ks key differeace with previcus mechods, o.g., recurren: neural
netwarks, canvolutonal naural networks [CNINS), is its @bty  query infermation from all the input
words sitehancouwsly, Ths is achieved via U self~udention cpzraivn (Bahdancu o al, 2015 Chaug
etal., 2016), whick computes the :ixularnity betwsen representation: of werds ia the secusncs i the
form ol atieaficn scores. Next the representation of each word 1s updated based on the words with
the highest attzation scares. Inspired by e capacily of vansformezs w lean meavingful inter-word
dependercies, ressarchess have siartad spplying sel-atenticn ia vidoa tsks, It was Erst adopledinto
CNNs by charnelwise atiention (Hu =tal., 2018) and aon-Iocal spaicl modeling (Warg e: al,, 2018).
More recendy, it Ias been proposel to replace CNNs with self-aucation peiwerks cither pa tially
(Belle et al,2019) o1 entisely (Ramacaindran stal., 2019). Contrary to diicrete convelutional keraels,
weizhts in szlf-anention are not ted wo particular positians Fig. AL 1L yetsellf-atention layers are
able to cxpress any convelutional leyer (Cordonaier o al, 2020). This flex:bility allows leveraging
long-range cesendercies under a firxed parameater budget.

An arguadk: onkogonal advarczment (o deep learning erchitecturss is the ncorporation o symmer.es
mito the mode! itsclf. Tke serainal werk by Cohea & Welling (2)1€) provides & resize to extend the
tronslatior squivaniance S CNNs in ovher symmedry gronps Iyamprove general mnban and ssmple-
efficiency further (soe §2). Translaron equivar!ance is Key 1o the success ol CNNs. L describes e
propecty tha! if a patierr: & translated, its numerical descriptors ars ako ranslved, bul sot modifiad.

In this work, we intreduce growp self-atiension, & self-allentioa formulaton thal grarts eqlivanance Lo
arbirary symucuy grouss. This is ackicved by defining pesitond sucodiags invasient 1o te action of
the group considered. [n wddition 1o generulization anc sample-effaency improvements provided by
group cquivariance, roup ecuivariant self-atention networks (6:A-Nets) bring important benzBs
over growp convelutanal architecturss: (1) Paramester cfficiency: coatrary Lo conveniional disercte
group coavolutional kemels, where weights are tied to purticular sositicas of neighborheods or the
group, 2roap equovariant self-attzntion leverages long-range dependencies an greup functions under
a fixcd parameter budget, vet itis eble to cxpress aay growp cenvoluticnal kernel. This allows for
very expreisive networks with low pararrecer count. (1) Steerability: iince the group acts directly on
the positonal encoding, GSA-Fets are sreerable (Wedler el al., 2018b1 by nature. This alows us o
go beyond greup discretizations that live ia the grid without introducirg iatzrpolation artifacts,

Cantribnfiong:
= We provide as eatasive avalysis on Lhe equivaniasce poopertics of sel=atcntion (§4).
* We provids a geral fonmalaticn W ipose groug squivatiance W self-atcnton (§5)
* We provids tustaaes of self-alteutive architootaes couwivatiant o serverel symucty gooups 1§61,
* Our results demonstate consistent improveneats of GSA-NetTs over non-squivariart pnes (§¢).
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L1Net
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DIRECTIONAL MESSAGE PASSING FOR MOLECULAR
GRAPIIS

Jchannas Gasteiger, Janek Grofl & Stephan Giinnemann
Techmeal Unwersity of Munick, Germany

J.gastelger, Jrassjia, guennemarr jéin.tun.de

AEBSTRACT

Giraph neneal netwerks have racently achiever greal Qecees in predicling quan-
mm macharical properties of mayecinles These models represen a malecnle ag
@ graph using only the distzncz beiween atoms (10des). They do nol. however,
counsider the spatial direction from one ator © énother, despite directional infor-
mation playing a ¢eniral role in cmpiricel potentials for molecaks, c.g. inanzula-
potzatiels. To alleviate this limitation we proposce circclional message passing,
in waich we embed the mesiages pasced between atoms iretead of the alems
themselves. Eack mecsage -6 associated with a direction ia coordinate ¢pace. Thece
directional message emdedcings ars rotwionzlly equivariant since the aiscciated
directinng “clat> wirh the malecide. We aropoie 3 mescage fassing schame anako-
£OUS to b2Eer peopagation, which uses ke directionzl infyriation by ransforning
messages based on he ang e baoween them, Addiconally, we use spaerical Bessel
functiors and spherical hanmanics to constroct theoretically well-fourded. orthog-
onal representations that achicve betier perfonmance than the carrently »evaken:
Gaussian radial basis rearcsentations while using fewer than ' of the parameters.
We leverage these innovalions to construct the directioncl message passiag naural
netoork (DimeNet). DirmeNet cutperfoems previous GNN: on average by 76 7 on
M and by 315% en QVY Cnramp ementzhon 1z avalabie orlns

| INTRCDUCTION

In recent years scienlists have started Jeveraging machine learning to redace the compulztion Gme
required for predicting molacalar propecties from a matier of hows and days w0 were mullisecoads.
With the advent of zraph ncaral netwer<s (GNNs) this approach has recently expericnced & small
revolution, siace they de not roquire any form of manuel frature cagincerng and sign.ficanty
outperform srevicus mocels (Gilmer et ol |, 2017; Schiitt et o, 2017). GNN: model the complex
iveractions betwean atome by embedding each atym in a high dimersiona space anc updating these
embeddirgs by passing mesiipes hatween aams Ry pradicimg fe aolenhal ensrpy these models
effeclively learn an empirical polenial fuacton. Classically, these functiors have been modelzd as
trz sum of four pares: (Leach, 2001)

E = Eynte 4 E;ﬂ;lt + Eusica = Eawntasdsd, (h

where Eiypre models e deperdency on bond lengths, £l on gz angles detwveen donds, By 00
bond rotatioas, i.e. e dihedral ang e between twe plases Cefined oy pairs of bonds, aod Foon noncee
models interacticns barween unconnected atome, e.g. via alectrostatic or van der Waals inlercetions.
The updale mescages :n GNNe, bowever, only depead on the previcus atom embeddings and the
pairwise distances between aloms — not on directional information such a: bond angles wnd roationg.
Thus CGINNS lack the sacord 2nd third fermrs ol this equatan and can only moadel therm viz complax
Fizberarder interacnons of mesizges Esteacing GNNS Iy madel them direelly 18 nat Sirghitorward
since GNNS solely rely on pairwise distancs, which ersures their nvariarce o ranslaticn, rotator.,
and inversioa of he molkeculs, which are Bnportant physical requeneats

I this paper, we propose to resolve this restuiction by using einbeddings associaed with the directions
o reighboring atoms, i ¢. by cmbedding atomrs &3 & sct of messages. These disectional message

InttDE: ffyww.caml.in.tun, de/dimenet
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R’ EGNN 071
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DIRECTIONAL MESSAGE PASSING FOR MOLECULAR

GemNet: Universal Directional Graph Neural
Networks for Molecules

Johannes Gasteiger, Florian Beeker, Stephkan Glinnemann
Technical Univeesity of Munich, Gerraary

{j.gaste ger,beckors , gronnonann}in. tun. do

Abstract

Effceively predictrg moleculas irteractiors hes the poteatial to accelerate molze-
uler dynamics by multiple erders of megnitd: aad thus revolutionize chemicel
simulations. Graph neural setworks (CNN3) have racently showa grect succesces
for this task, overteking classical methods based on fixed molecular kerrels, How-
ever, they sull appear vary limuted from a thaorelical peripectiva, siace regulor
CINNG cannat chstingrish certaim ypas of araphs Inthes work wa closa this gan
hetween Deery and practice. We Show That GNNS wilh dwrectes edge embexkiings
and two-hop message passing are indeed urnoversal approximators for prediccuns
thet are invariant (O ranslation, and equivariant w permutation and rotaton. We
then kveraze these insights and noultipls stuctucal improvements 1w propose the
Boomst X essagc passing nsual netwock (GanNet). We demonstrate the Lensfits
of the proposcd chenges ir multipl: ablation stadizs. GemNet outperforms pee-
vicus models on the COLL, MDI17, end OC2D) dutasets by 31%, 11 %, aad 206,
respactively, and performs espacially well en the mes challeaging molacules. Cur
implementaticn i available online.

1 Intreductiun

Graplk nsaral naawarks (GNNG have shown grear promiss M predicring the enerpy and arher

Juzntem mechanical propertizs of molecules. They can predict Diese properties orders of mzgnitudes

[aster thun methods from gquartum chemisuy — al comparable accuracy. GINNs can thus 2nzkle he
avcurete simmulation of systems that are orders of magnitude lugse Howeve, they stll exlsbin severe
beoetical end practcal limitations. Regular GNNs are anly as powerful as the - -Weisfziler Lelunen
st of isomorphism and hus cannot distinguesh beiween certain mo.ceules [45,60). Morceves, they
require a lage number of iraning camplac to achieve good accuracy.

[r: this work we fits! resolva the questiorable expressivanes: 57 GNNs by proving sufficient concilions
ler universality 1n the czs2 of avanance to raaglators and rotations and equnvanarc: o penmutations:
and Then extendme ths resnlt Iy eotanionzdly equuvariant predichans. Simp o nsing the Tl geometrie
informarion (e g all pairwice armmic (hsraneas) ina laver does ny ensire mivearal appmimarion
For example, il our model uses @ rotetionaly irvariant laver we Jose he relative informztion between
cororents. Such a model thus cunnot distinguisa berween [zatares thet are rotated doCerendy. This
issuc is woononly Enown as the “Picasso problen™. An image model woth rotatioaally _ovaciant
laysos cennot detect whether a person's eyes are rotated covecty. Insiead, we pesd a model that
arcscrves clative rotational ‘rformaticn and is only iavasiant o glebal rotations. To areve universality
in the rotationally invariart case w2 extend a recent universalily result based or point cload medels
that use “epresentation: of the roteticn groap SO(3) [L£]. We sreve that spharical rapresentations
are actually sufficient; full SO[3) repeesentations are not necessary. We (ken generzlize this 10
setatiorally equivaniart peedictions by leveraging a recen: result on extending invariaal 10 equovariant

"btepo: / fowe doml.r.tus=.de/genmet
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The transitive action of SE(3) on homogeneous space R? x S* = SE(3)/ e
/g € SE(3)

o7l . (x,n) = (R I(x' = x),R™'n) € R3 x §2
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The transitive action of SE(3) on homogeneous space R> x §% = SE(3)/ £x,m)

o7l . (x,n) = (R I(x' = x),R™'n) € R3 x §2

Transitivity: Vi nerixs? 3g,,ese3) - (1) = gy - (R0, €)
Then SE(3) equivariant convolution on homogeneous space R? X §% = SE(3)/ are given by o »
n . b b./' o
— (X, 1,)
[ (xgm,) = J k(g(xi,na) + (Xp, ) )f (X, M )dX,, Ay, N® N
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interazuons detween itoms by embedding
embeddinge by passing messages Hetwed
effectively leem an empirical potantial iy
the sum of four pasts: (Leach, 2000)

SE(3) Cormorant
SE(3) LI1Net
G LieConv
SE(3) TEN
SE(3) SE(3)-Tr.
R’ x $*xR* DimeNet++ *
R’ x S*xR* SphereNet *
SE(3) PaiNN * 045
R’ EGNN 071

SE(3) SEGNN (Ours) .060 42

arx

L% = Lhenss 4
wiere &uas models the depeadency on b
hond rotarinng ie 1he dihedra’ angle her
mdda S inferactinns HeTween nnear neced
The update messages i GNN:, howeva
patrwise drilances between 2toms — nol of
Thus, GNNs ke the sacond and third ted
highee ocder interact.crs of messages. Exl
since ONNs solcly rely on parwise distar
arc nversion of the molecule, which are

In this paper. we propose w resolve this rel
10 neighboring atoms, ie. by smbaddin

-
'h::p:: S lwww.daml .in.tum.cc/d

arXiv:2106.08903v9 [physics.comp-ph] 5 Apr 2022
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DIRECTIONAL MESSAGE PASSING FOR MOLECULAR

GemNet: Universal Directional Graph Neural
Networks for Molecules

Johannes Gasteiger, Florian Beeker, Stephkan Glinnemann
Technical Univeesity of Munich, Gerraary

{j.gaste ger,beckors , gronnonann}in. tun. do

Abstract

Effceively predictrg moleculas irteractiors hes the poteatial to accelerate molze-
uler dynamics by multiple erders of megnitd: aad thus revolutionize chemicel
simulations. Graph neural setworks (CNN3) have racently showa grect succesces
for this task, overteking classical methods based on fixed molecular kerrels, How-
ever, they sull appear vary limuted from a thaorelical peripectiva, siace regulor
CINNG cannat chstingrish certaim ypas of araphs Inthes work wa closa this gan
hetween Deery and practice. We Show That GNNS wilh dwrectes edge embexkiings
and two-hop message passing are indeed urnoversal approximators for prediccuns
thet are invariant (O ranslation, and equivariant w permutation and rotaton. We
then kveraze these insights and noultipls stuctucal improvements 1w propose the
Boomst X essagc passing nsual netwock (GanNet). We demonstrate the Lensfits
of the proposcd chenges ir multipl: ablation stadizs. GemNet outperforms pee-
vicus models on the COLL, MDI17, end OC2D) dutasets by 31%, 11 %, aad 206,
respactively, and performs espacially well en the mes challeaging molacules. Cur
implementaticn i available online.

1 Intreductiun

Graplk nsaral naawarks (GNNG have shown grear promiss M predicring the enerpy and arher

Juzntem mechanical propertizs of molecules. They can predict Diese properties orders of mzgnitudes

[aster thun methods from gquartum chemisuy — al comparable accuracy. GINNs can thus 2nzkle he
avcurete simmulation of systems that are orders of magnitude lugse Howeve, they stll exlsbin severe
beoetical end practcal limitations. Regular GNNs are anly as powerful as the - -Weisfziler Lelunen
st of isomorphism and hus cannot distinguesh beiween certain mo.ceules [45,60). Morceves, they
require a lage number of iraning camplac to achieve good accuracy.

[r: this work we fits! resolva the questiorable expressivanes: 57 GNNs by proving sufficient concilions
ler universality 1n the czs2 of avanance to raaglators and rotations and equnvanarc: o penmutations:
and Then extendme ths resnlt Iy eotanionzdly equuvariant predichans. Simp o nsing the Tl geometrie
informarion (e g all pairwice armmic (hsraneas) ina laver does ny ensire mivearal appmimarion
For example, il our model uses @ rotetionaly irvariant laver we Jose he relative informztion between
cororents. Such a model thus cunnot distinguisa berween [zatares thet are rotated doCerendy. This
issuc is woononly Enown as the “Picasso problen™. An image model woth rotatioaally _ovaciant
laysos cennot detect whether a person's eyes are rotated covecty. Insiead, we pesd a model that
arcscrves clative rotational ‘rformaticn and is only iavasiant o glebal rotations. To areve universality
in the rotationally invariart case w2 extend a recent universalily result based or point cload medels
that use “epresentation: of the roteticn groap SO(3) [L£]. We sreve that spharical rapresentations
are actually sufficient; full SO[3) repeesentations are not necessary. We (ken generzlize this 10
setatiorally equivaniart peedictions by leveraging a recen: result on extending invariaal 10 equovariant

"btepo: / fowe doml.r.tus=.de/genmet

15th Conference on Newral Informetion Procassing Systams NewrdPS 2021)
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SEQ3)
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Recall lecture 1.7:

IS a group convolution”

Table 2: Performance comparigon o1
Error (MAE) between model

edicti

Task Qo
Units bohr?

Ae 3

meV

IOMO
meV

NMP 092
SchNet * 235
Cormorant 085
L1Net 088
LieConv 084
TEFN 223
SE(3)-Tr. 142
DimeNet++ * 0
SphereNet * 046
PaiNN * 045
EGNN 071

69
63
61

4
41
34
46
30
40

SEGNN (Ours) .060
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Spherical Message Passing for 3D GGraph Networks

YiTin®! Limei Wang®*' Menp Lin' Xuan Zhang' Rera Dzdekin ' Shuiwang Ji

Abstract

We consider represertetion leaming from 3D
graphs in which each node 1 asieciated with a
spatial posilion in 3D. This 1s an uncer exolored
erca of rascacca, and a onncpled frumowork 13
cnreantly licking  In thic wnrk we pmpese o
generic framework, Known as the 3D zraph netl-
werk (2DGN), o provide o unificd iaterface ot dif-
ferent levels of grarnlarity fer 3D graphs. Ruilton
SDGIN, we propose the spherical message Jess-
ing (SMI') a3 a novel and soccific scheme for
realizing the ADGN framewark in the spherical
coordinate system (SC§). We conduct formal ana -
yses and chow that the relative locatien of scch
node 11 3D graphs s uniquely defined in the SMP
scheme. Thus, cur SMP represen's a complate
end accurale architecture for learning frem 3D
graphs in the SCS. We derive physically-based
represcilelions of geoetic infonuation and pro-
pose the SpherelNet for leaming reanesentations of
2D grapas. We show thatecistng 3D deep models
va oc viewel as special cases of the SphereNel.
Expermental rasults demonsirate that the use of
complete and accurate 3D miorration 1a 3DGN
end SplicieNet leads w significait peformance
improverreats in prediction tasks

1. Introduction

In masy real-world studies, structured objects such
as mokecules and proteins ar: pawcally moedzled as
zrapls (Goai et al., 2005, Wu ot al, 2018, Skeivashidec
etal 200 1; Feut et al, 2017: Lia atal,, 2020; Wanget al,
2027). With the advances of desp kaming, gradh aeural
actwerks (GNN3) have been developed for leerning frem
zraph data (Kinf & Welling, 2017 Velickavié et al | 2018:
Xuaeta., 20.9; Gac & Ji, 2019; Gao =tal., 2020; Yuan &
Ji, 2020) In Battaglia ct al. (2013), cxisting CNN mcth-
nds have heen unified i the ganesal graph nenunk (GN)

"Equél conmibution ‘Daparimem of Compiter Scienze & En-
zinesring Texac ARM Tlniversity, TX. TISA Correqpondence tor
Skuiwarg Ji <sji@ tenm cous-.

frumework and can be realized by message passing architec-
twes (Gilives et al, 2017 Sawhei-Gonzalez el al., 2020).
The original GN frumework is ceveleped for regular grophs
rather tham 3D graphs Generally, a 3D zraph contains 3D
coordinates for coach aode giver m the Cartestan system
alang with ‘he zrph sirsctire (T er al | 2016; Townghend
etal., 2019 Axelrod & Gomez-Bembarelli. 2020). Dilfer-
ent types of relative 3D information can be derived from
D graphs, and they can he important in come applicatinng,
such s bord lenzths and argles in molesular modeling.

In this work, we progoie the 3D graph recwork (3DGN)
as a genenc lramework for 3D zrmaphs. The 3DGN airs
at providing a Cear mtzfece at differan kvels of graph
granularity such that researchers can emiiy davelop novel
metacds ler 3D graphs. We nole thal the onginal Care-
sten cocrdinales cn 3D graphs usually cannot sarve s drrecl
inouts o computational models, o5 they conlain severely
redundani 1alomaton thar may hat mode] perlormance., In
additior, they arc rol invasan: o transhation asd rotation of
mput graphs. Heace. Dllowing message pasiing reural nat.
works (MPNNs) (Scarselli et al, 2008 Gilmer et al, 2017,
Vignac et al.. 2020), we further prosese a novel messagze
passirg schems, known s the spherical magcags passing
(SMP), for reaizing the 3DCN frumewortk Based on for-
mal analysis in tac spharizel ccordirale system (5CS), we
show ‘hat the relative baeation of 2¢5 neds n 3D graphs s
uniquely dewermined in the SMP scheme. Herce, oar SMP
represents @ complete and accurats architeeture for realizing
the 3DGN 1n SCS. As the encoced 3D information 1s the
re.aidve positional informaden sach as diswrces beoween
pairwisc zodcs. SMP yiclds predictions thet arc inveriant te
trenslation and rotaton of input graphs.

We apply the SMP to ieal-woild probleans. where meanicg-
ful phycical represeatations zre irpartzmt. Ry integrating
the SMP and physical representations approximating the
dawity functonal deary, we develop the solerica mressaze
passir g newral natwnrk s, knonwn as the SphereNet, far 30N
graph leam g, We show 1zl exisling models [or 3D graphs,
such as SchNet (Schit <t al, 2017) and DimeNet (Klepare
et al |, 20Uh), are spetial cases of onr SphereNet, 2z they
only encode partial 3D informration. We conduct experi-
marts an various types of datasets including QM9, OCZ0,
ardd M7 Experimental resnlis shew that comrpared with
basceline methods, SpherzNet achieves the best perfarmance
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Table 2: Performance comparison
Error (MAE) between model pred

Task Qo
Units bohr?

Ae EHOM
meV me

NMP 092
SchNet * 235
Cormorant 085

L1Net 088
LieConv 084
TEFN 223
SE(3)-Tr. 142
DimeNet++ * 043
SphereNet * 046
PaiNN *
EGNN

69
63
61
68
49
58
S

4 27
48 29

SEGNN (Ours) .060
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E(n) Equivariant Graph Neural Networks

Abstract

This paper introduces a new model 0 kearn graph
neural retworks equivanant to rotations, transla-
ticns. reflections and permutations celled E(n)-
Erpnivar ant Graph Nearal Network< (GNN:) In
contrast with sxicting methads, oir work does rot
requre computstionslly expensive higher-orcer
rcproscatacions in mntcrmediate layers while at
stll aclucves cunpettive vt beler palw e,
In acdhton, whereas exising metiods are lim-
ited (0 equvanance on § dimensiozal spac:s,
our model is casily scaled o higher-dimensional
spaces. We d=monstrate the effectiveness of our
method on dynemical systems modeling, repre-
seatation learning in graph autoencoders and pre-
dicting malecnlar propetties

1, Introduction

Altlwugh deop leaung has kugely icplaced hand-cialied
[cutures, nsy adrarces ac catcelly depeudoul on mduc-
uve dlases in doep neurel networks. An effectlve method to
restnct neural networks tc relevant fanctions 1s to exploit
the symmetrv of problems by enforcing equivarianze with
respect to trans‘ormeticns from a certain symmetry group.
Noteble examples are translation equivaniance 1n Convo-
lutiona. Neural Networks and permutation egaivarmance in
Craph Nenra Network< (Brima e al | 2013 Defferra-d o 51
2016; Eapt & Welling, 2016q).

Many problems exhibit 3D translat.on and rotation symme-
trics Some examples ar: poirt douds (Uy et b, 20191, 3D
molecular structures |Remaknshnan e al. 2014) or N-body
pertele simulatioas (Kipf et al | 701I8)  The gronp corre-
sponding to thece syramatries is samed tke Euclideaa group:
SLE(5) or when reficctions arc included E(3). It is often cc-
sircdd that predictions on these tasks arc cither cquavanant or
iwantanl with resped. W Ei3) tans/vnnetiuns,

'UsA-Beach Dadta Lab, University of Amaterdam,
Netherlands. Caorrespondence to:  Victoe Garcls  Satoe-
rai <vgarcisatoras@uvanl >, Emiel Foogeboam
<2 hoogebrom@uvanl >, Max Welling <mwellieg @uva.al>.

Proceeaings of we 38" mternationad Conference on Machize
Learning, PMLR 13, 2021. Copyrghy 2021 by the auther(s).
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Figure . Exanpk of rozation equivariance ona graph witl a grash
neursl retwork o

Recently, varnions forme and methods 10 achieve E(1) or
SE(Z) equivariance have besn proposed [Thomas ot sl
201&; Fuchs ctal, 202D; [Ffinzi ct al., 2D02); Xéhler ct al.,
2020). Mauy ol iese worhs aclucve tnsovations iz sludy-
ing 1ypes of higher-arder represeniacors for inermediane
networg layers However, the trensformations far these
higher-proer represertatioas requirs coefficients or apprex-
imations tha: can be expeasive to compute. Addiionally,
in practice for many types of data the mputs and outputs
are rrstrictec te scaler values (for ingance temperatuce or
energy. referred to as type-0) in literature) and 3d vectars
(for meance velocty or momentom, referred to az type-11n
litersture)

Inthis work we present 2 new architecture that is ransletion,
rotation aad -eflecion egu:vanant (E(n)), end permutation
ecuivanant with respect to an input set of paints. Ou- model
is simpler than nrevions methads 1 that it does rot require
the sphenical harmonics as in (Themas et ol 2018; Fachs
ctal, 2020) whilc it can stull achicv: competitive or bet-
t aesulta, I adation cyuivanasce i var andd 13wt
limited 1o the 3-dimensional space and cian be scaled (0
largcr durensiona. spaces wihcuta Slgllflcalt ncreasc in
compulation.
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Recall lecture 1.7:
“Any equivariant linear layer between
feature maps on homogeneous spaces
IS a group convolution”

Table 2: Performance comparison «
Error (MAE) between model predics

Task 8] Ae EHOMO
Units bohr’ meV  meV _
non-linear no geometry NMP 092 69 473 %
regular R® SchNet * 235 63 4] o
pseudo-linear steerable SE(3) Cormorant 085 61 34 O
steerable SE(3) LI1Net 088 68 46 %
regular G LieConv 084 49 30 0
steerable SE(3) TFN 223 58 40 =1
pseudo-linear steerable SE(3) SE(3)-Tr. 142 53 35 g
non-linear regular  RIx S X R* DimeNet++ * 043 32 24 o
non-linear regular R%x §?x RY SphereNet * 046 32 273 Z
non-linear  reguleerable? SE(3) PaiNN * 045 45 27 <
non-linear regular R® EGNN 071 48 20 ©

hon-linear steerable SE(3) SEGNN (Ours) .060 42 24



