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D(l)(R) = [ D(l)
mn(R) ]l

m,n=−l

Wigner-D matrices of type  are the irreducible matrix representations of . 
We will denote these  dimensional matrices with 

l SO(3)
(2l + 1) × (2l + 1) D(l)(R)

“frequency”

Wigner-D functions 

form an orthogonal basis for !!!𝕃2(SO(3))

The  dimensional vector space on which  acts will be called a 
steerable vector space of type  and denoted with . A vector  
will be called a type-  vector.

(2l + 1) D(l)(R)
l Vl = ℝ2l+1 v ∈ Vl

l
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Example (type ): A type-0 vector  is just a scalar the trivially transforms by 
a  dimensional “matrix”

0 v ∈ V0
1 × 1

D(0)(R) v = 1 v = v

Example (type 1): A type-1 vector  is a 3D vector (e.g. velocity, force, 
displacement) that transforms directly via the rotation matrix 

v ∈ V1
R ∈ SO(3)

D(1)(R) v = R v

v D(0)(R) v

v D(1)(R) v

cos(α)cos(γ) − sin(α)cos(β)sin(γ) sin(β)sin(γ) cos(α)cos(β)sin(γ) + sin(α)cos(γ)
sin(α)sin(β) cos(β) −cos(α)sin(β)

sin(α)(−cos(β))cos(γ) − cos(α)sin(γ) sin(β)cos(γ) cos(α)cos(β)cos(γ) − sin(α)sin(γ)

D(l)
mn(Rα,β,γ)
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The Wigner-D functions  form a complete orthogonal basis for functions on . 

Thus any function can be represented in such an  Fourier series:

D(l)
mn : SO(3) → ℝ SO(3)

SO(3)

The central columns  is invariant to rotations  around 
chosen reference axis (e.g. ):

D:0 Rα
ex

These -invariant functions coincide with functions on the 
sphere : the spherical harmonics !

SO(2)
S2 ≡ SO(3)/SO(2) Y : S2 → ℝ

f(R) = ∑
l

l

∑
m=−l

l

∑
n=−l

̂f (l)
mnDl

mn(R)

   = ∑
l

tr ( ̂f (l) D(l)(R−1))

∀α∈[0,2π) : D(l)
m0(R Rα) = D(l)

m0(R)

[ℱG f ]l = ∫G
f(g) ρl(g) dg

ℱ−1[ ̂f ](g) = ∑
l

dρl
tr [ ̂f(ρl)ρl(g−1)]

General form Fourier trafo on  (Peter-Weyl)G

Forward

Inverse
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Spherical harmonics: complete orthogonal basis for  functions on S2

l

    


   

Rα,β,γ = Rez,γRey,βRex,α

nβ,γ = Rez,γRey,βex
Y(l)(nβ,γ) ∼ D(l)

m0(Rα,β,γ)

Spherical Harmonics

m

Figure from: https://en.wikipedia.org/wiki/Spherical_harmonics

• A Fourier basis on the sphere S2

• Solutions of Laplace equation 
(hence “harmonics”)

• Fourier coefficients transform via 
block-diagonal representations

f(Rn) = [ℱ−1
S2 D(R) ℱS2 f ]](n)
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Spherical harmonics are  steerableSO(3)
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Since  and  are (irreducible) 
representations (  ) it follows

Y(nβ,γ) ∼ D:0(Rα,β,γ) D(l)

D(l)(RR′￼) = D(l)(R)D(l)(R′￼)

∀R∈SO(3),n∈S2 : Y(l)(R n) = D(l)(R) Y(l)(n)
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Since  and  are (irreducible) 
representations (  ) it follows

Y(nβ,γ) ∼ D:0(Rα,β,γ) D(l)
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∀R∈SO(3),n∈S2 : Y(l)(R n) = D(l)(R) Y(l)(n)
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Equivariant attribute embedding

Functional representation of a 
geometric quantity
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Clebsch-Gordan Tensor Product
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Consider the tensor product of two steerable vectors  and a ∈ Vla b ∈ Vlb

a ⊗ b = abT =
a1b1 a1b2 …
a2b1 a2b2

⋮ ⋱

( using identity        )vec(AXB) = (BT ⊗ A)vec(X)
Vectorized tensor products are steerable via:

vec(a ⊗ b) ↦ ( D(lb)(R−1) ⊗ D(la)(R) ) vec(a ⊗ b)

The tensor product rotates via

a ⊗ b ↦ D(la)(R) a ⊗ b D(lb)(R)T
(    ,a ↦ D(la)(R)a  )b ↦ D(lb)(R)b

Its representation is block-diagonalizable: Dl1(R) 0 0 0
0 Dl2(R) 0 0
0 0 Dl3(R) 0
0 0 0 ⋱

vec(a ⊗ b)Q−1 Q
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Consider the tensor product of two steerable vectors  and a ∈ Vla b ∈ Vlb

a ⊗ b = abT =
a1b1 a1b2 …
a2b1 a2b2

⋮ ⋱

The tensor product rotates via

a ⊗ b ↦ D(la)(R) a ⊗ b D(lb)(R)T

( using identity        )vec(AXB) = (BT ⊗ A)vec(X)
Vectorized tensor products are steerable via:

vec(a ⊗ b) ↦ ( D(lb)(R−1) ⊗ D(la)(R) ) vec(a ⊗ b)

(    ,a ↦ D(la)(R)a  )b ↦ D(lb)(R)b

Its representation is block-diagonalizable: Dl1(R) 0 0 0
0 Dl2(R) 0 0
0 0 Dl3(R) 0
0 0 0 ⋱

vec(a ⊗cg b)Clebsch-Gordan tensor product 
includes change of basis!
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Consider two steerable vectors  and  of type  and  respectively


The Clebsch-Gordan tensor product is defined as

v(l1) =
⋮

v(l1)m1

⋮
∈ Vl1 v(l2) =

⋮
v(l2)m2

⋮
∈ Vl2 l1 l2

(v(l1) ⊗w
cg v(l2))(l)

m =
l1

∑
m1=−l1

l2

∑
m2=−l2

C(l,m)
(l1,m1)(l2,m2)

v(l1)
m1

v(l2)
m2

A steerable output vector of type l

. . . . . . . . . .
• The Clebsch-Gordan tensor product is highly 

sparse (many )C(l,m)
(l1,m1)(l2,m2)

= 0

• In particular for all  and  
the CG coefficients are zero.

l < | l1 − l2 | l > l1 + l2

Familiar Examples:

• Product of two scalars       


• The scalar-vector product  


• The dot product                 


• The cross product              

(l1 = 0, l2 = 0, l = 0)
(l1 = 0, l2 = 1, l = 1)
(l1 = 1, l2 = 1, l = 0)
(l1 = 1, l2 = 1, l = 1)



Clebsch-Gordan Tensor Product with the e3nn library
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https://docs.e3nn.org/en/stable/ 

https://docs.e3nn.org/en/stable/
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