UNIVERSITY OF AMSTERDAM
X

Group Equivariant Deep Learning

Lecture 3 - Equivariant graph neural networks

Lecture 3.3 - Tensor products as conditional linear layers (and MLPs)

Erik Bekkers, Amsterdam Machine Leaming Lab, University of Amsterdam
This mini-course serves as a module with the UvA Master Al course Deep Learning 2


https://uvadl2c.github.io/

Objectlve S 0(3) equwarlant MLPs

m; = MLP(, £, )



Objective: SO(3) equivariant MLPs
-

We are looking for (update/message) functions that are equivariant to SO(3) transformations . Y ®

PP RIV) = p™“ R)P(V) \|

Problem: We like to parametrize ¢p(v) = MLP(v) with multi-layer perceptrons,
however, they can only handle scalar-valued vectors



Objective: SO(3) equivariant MLPs
-

We are looking for (update/message) functions that are equivariant to SO(3) transformations fJ Y ®

MLP(p™(R)V) = p°“(R)MLP(V) .]& W

@
m; = MLP(, £, )

Problem: We like to parametrize ¢p(v) = MLP(v) with multi-layer perceptrons,
however, they can only handle scalar-valued vectors



Objective: SO(3) equivariant MLPs

[%]

We are looking for (update/message) functions that are equivariant to SO(3) transformations . . ®

MLP(p"(R)v) = p®(R)MLP(v)

Problem: We like to parametrize ¢p(v) = MLP(v) with multi-layer perceptrons,
however, they can only handle scalar-valued vectors

o Scalars v € R trivially transform, i.e., ps(R)v =1-v=v

o O
-
—

e Thus any vector v € RC of scalars transforms via p(R) = [EBCpO] (R) =

elelellS
o o = O
_—O



Objective: SO(3) equivariant MLPs

We are looking for (update/message) functions that are equivariant to SO(3) transformations fJ [

MLP(p"(R)v) = p°“(R)MLP(v) . \H

m,; = MLP(f, f,

Problem: We like to parametrize ¢p(v) = MLP(v) with multi-layer perceptrons,
however, they can only handle scalar-valued vectors

o Scalars v € R trivially transform, i.e., ps(R)v =1-v=v

( 0)

0
0
“~ 0
0 1

e Thus any vector v € RC of scalars transforms via p(R) = [EBCpO] (R) =

oo = O

1
0
0
0

\ /

So whatever the MLP takes as input, it should be invariant to rotations, i.e.,

pin — pout —1Id



Objective: SO(3) equivariant MLPs

¢ |
We are looking for (update/message) functions that are equivariant to SO(3) transformations fJ ot

2Z
MLP(p™(R)v | a) = p®“(R)MLP(v | a) —N

@
m; = MLP(, £, )

Problem: We like to parametrize ¢p(v) = MLP(v) with multi-layer perceptrons,
however, they can only handle scalar-valued vectors

o Scalars v € R trivially transform, i.e., ps(R)v =1-v=v

( 0 0)
0

~. 0
0 1

e Thus any vector v € RC of scalars transforms via p(R) = [EBCpO] (R) =

oo = O

1
0
0
0

So whatever the MLP takes as input, it should be invariant to rotations, i.e.,
pin — paut —1Id

Thus also any pair-wise attribute embeddings a;; = a(Xj, Xj) =Y (Xj — X;) should be invariant



Objective: SO(3) equivariant MLPs
-

We are looking for (update/message) functions that are equivariant to SO(3) transformations . i | ®

—
MLP (p"(R)v |2) = p(R) MLP (v | ) — \|

Problem: We like to parametrize ¢p(x) = MLP(X) with multi-layer perceptrons,
however, they can only handle scalar-valued vectors

/\

Solution: Use equivariant multi-layer perceptrons MLP



Objective: SO(3) equivariant MLPs

Q

We are looking for (update/message) functions that are equivariant to SO(3) transformations

MLP (p"(R)v|a) = p®“(R) MLP (v | a)

Problem: We like to parametrize ¢p(x) = MLP(X) with multi-layer perceptrons,
however, they can only handle scalar-valued vectors

/\

Solution: Use equivariant multi-layer perceptrons MLP

Pair-wise attribute embeddings a;; = a(xj, XJ-) =Y (Xj — X;) can now be equivariant

Vresos) : PR Y(X; —x) = Y(R(X; — X))

\ So an SO(3) steerable function!



How to condition MLPs?

Conditional MLP
MLP(v|a,)

Conditional linear layers:

Stacking (concat) features to the input

A\
w (alli>

Adaptive/conditional weights through basis functions

W(a,) v



How to condition MLPs?

Conditional MLP
MLP(v|a,)

Conditional linear layers:

Stacking (concat) features to the input

A\
w (alli>

Adaptive/conditional weights through basis functions

bilinear

Wi(a,) v = IMa) W v



How to condition MLPs?

Conditional MLP
MLP(v|a,)

Conditional linear layers:

Stacking (concat) features to the input

A\
w (alli>

Adaptive/conditional weights through basis functions

W(a,) v =5 Y(a,) RV v



Conditional linear layers

f — F=Wf — =c(f)

linear layer activation

t t’

Linear layer (matrix-vector multiplication)

I'=W f



Conditional linear layers

f = '=Wkx,—-x)f — {'=0cf)

activation

Linear layer (matrix-vector multiplication)
I'=WTt

Conditional linear layer (weight matrix depends on X, — X )

"= W(x, —x)f

linear layer

—

Convolutional message passing

|
f e

[il c

X) @ 4 \[]

|
%,_J
geometric attribute




Conditional linear layers

f = '=Wx,—-x)f — {'=0cf)

linear layer activation
\4%
f f’
Linear layer (matrix-vector multiplication)
=W f Let W : R° —» R*C a matrix valued function

()
* Expanded in a basis Y(X) = | v,x)
)
. Basis (coordinate embedding) functions ¥, : R® — R

Conditional linear layer (weight matrix depends on X, — X )

., : : J
f = W(x, —x ) f - Matrix-valued weights W ; with elements w-

l
W(x, —x ) = Z W, Y, (x, — X))

N I ™I




Conditional linear layers

t t’

f = '=Wx,—-x)f — {'=0cf)

linear layer

Linear layer (matrix-vector multiplication)

I'=WIT{

Conditional linear layer (weight matrix depends on X, — X )

"= W(x, —x)f

bilinear

"=t W Y,(x,—x))

/

NV

activation

Let W : R’ — R*C 3 matrix valued function
()

» Expanded in a basis Y(x) = | v,x)
)
. Basis (coordinate embedding) functions ¥, : R® — R

« Matrix-valued weights W 7 with elements wf

l
W(x, —x ) = Z W, Y, (x, — X))

I ™I




Conditional linear layers



Conditional linear layers

s\
roduc
rensof P
are Wy (xp— ¥
nal i ear | yers f =19 v
sl
X a
{’ — W(

Next up Clebsch-Gordan tensor product:
A convenient TP for steerable vector spaces




