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So whatever the MLP takes as input, it should be invariant to rotations, i.e.,

pin — pout —1Id
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Thus also any pair-wise attribute embeddings a;; = a(Xj, Xj) =Y (Xj — X;) should be invariant
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Solution: Use equivariant multi-layer perceptrons MLP

Pair-wise attribute embeddings a;; = a(xj, XJ-) =Y (Xj — X;) can now be equivariant

Vresos) : PR Y(X; —x) = Y(R(X; — X))

\ So an SO(3) steerable function!
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Conditional linear layers
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Conditional linear layers
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linear layer

Linear layer (matrix-vector multiplication)
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bilinear
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Conditional linear layers
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Next up Clebsch-Gordan tensor product:
A convenient TP for steerable vector spaces




