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Lecture 2 - Steerable group convolutions

Lecture 2.7 - Derivation of Harmonic! nets from regular g-convs
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From regular to steerable via a Fourier transform
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From regular to steerable via a Fourier transform
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Regular group convolutions:
Domain expanded feature maps
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Co-domain expanded feature v
maps (feature fields)
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Deriving F from the knowns (K, F 1)

Instead of solving the kernel constraint, let’s compute

K™Y =(F o F o F ™)
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Deriving F from the knowns (K, F 1)

So we “just” need to compute

ky(x' — x) = k(R (x'—X), 0'—0) e'19 ¢1/940 40’
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So we “just” need to compute
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Recall that we given enough frequencies we can expand any spatial kernel in circular harmonics (lecture 2.1)
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Deriving F from the knowns (K, F 1)

So we “just” need to compute
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Deriving F from the knowns (K, F 1)

So we “just” need to compute
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Deriving F from the knowns (K, F 1)
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Deriving F from the knowns (K, F 1)
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Steerable group convolutions
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Harmonic Networks: Deep Translation and Rotation Equivariance

Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov and Gabrel J. Brostow
{a worrall, s.garbin, d.turmukhambatev, g. orcstew}ﬂcs. ucl.ac.ak
University Colleze London®

Abstract

Translating or rotating an input image skowd not affect the
resalts of muny computer vision fuska, Convelstivnad rewewl ner-
works (CNNis) are alread translation equivariant: inpuf image
transiatiors produce preportiorate feature map translation:.
This is not the case for rotations. Globa! rotaticn equivariance
is tipically sough! through data augmentation, but paich-vise
equivariance is more difficul’. We present Harmonic Networks
or H-Nets, a CNN exhibiiing equivariarce o palch-wiie trans-
larion and 360-rotarion. We achieve this by replacing regular
CNN filters with circwlar Farmonics, retwrmng a maximal
responie and orientafon for every receptive field patch

H-Nete use i rich, parameter-eficient and fived cnmputn-
tioral complexity representation, ana we show that deep fecture
maps within the n=twork encode complicated rotatonal invvan-
ants. We dzmenstrate that our layers arz general enough to be
used in conjunction with the latest archilectures and techniguer,
sucht ws deep supreevasion and Lutcle noremalication. We ulse
aclieve state of the ert classification on retated MNIST, and
comperitive recults on other henchmork challenges

1. Introduction

We tackle the challange of representng 360°-rotations
in comvolutional neural networks (CNNg) [19].  Cuarrently,
cormvolutional layers are constraired by design to map an image
1o & feature vector, and franslated versions of the image map
to proportidnally-translated versions of the same feature vector
[27] (ignonng edge effecs)—see Figure 1. However, uatil now,
il ane rofafes the CNN mput, then the teature vectors do nol
necessarily roate in a meaningul or casy w predict mannes
The sought aftar property, directly relating input ransformations
to feature vectr trandarmations, i< called egravwrriaones

A special case of equivarance is imariance, where fecture
vedors rerain constint under all transformrations of the inpuc.
This can be a desirabl: property zlobally for a model, suchas a
classifier, but we should bz careful nct to restrict all intermediate
levels of processing 1o be ransfommation invariant. For exaraple,
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Fgure 1. Paich-wise transladon equivanance in CNNs anses from
trandaticnal weight tying, so that a translation « of the input ‘mage L,
Izads to a comresponding trandlaticn v of the feature maps f({I', where
3 #F v in geozal, due w pouling dloos. Eowever, fun iotwion:, CNINs
do not y=t have a featurs space trandformation ¢ ‘hard-bak:d’ nto
their structure, and it is complicated o discover what 2 maybe, if it
exists at all. Harmonic Networks have & hard-baked representation,
which allows for casier interpretaion of feature maps—see Figure 3.

conader deecting a detormable odect, sech as a bultertly. The
pose of the wings is limited in range, and so there gre only cenain
poscs our detecior should rormally sce. A transfermietion invari-
unt cetector, good al dececting wings, would detec: them whether
they were bigeer, further apart, rotated, etc., and it would encode
all these cases with the seme regresentation. It would fail to
police ronsense siluations, however, such as a buterfy with
wings rotated past the usual rangz, because it has thrown that
exira pose informetion away. An equiviriant detector, on the
other hand, does ot dispose of lokal pose information, axd so it
hands on a nicher and more useful representaton (o downstream
processes. Equivanance conveys more infermation about an
nput to downslream proczsses, il also constrairs the space of
possible leamed models to those that are valid under the rules of
natural image formation [70]. This makes leaming more elichle
and helps with generdhizaior. bor mstance, consider CNNs.
The key insight is that the statistics of natural images. enbodied
in the correlaticns between pixels, are a) mvacian! to translation,
and h) Fighly lacalized Thus feamres at every layes in 3 ONN
are comauted o lozal receptive fields, where weizhts are shared

o
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Steerable G-CNNs as Clebsch-Gordan networks
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Steerable G-CNNs as Clebsch-Gordan networks
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Steerable G-CNNs as Clebsch-Gordan networks
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