UNIVERSITY OF AMSTERDAM
X

Group Equivariant Deep Learning

Lecture 2 - Steerable group convolutions

Lecture 2.5 - Steerable group convolutions


https://uvadl2c.github.io/

From regular to steerable via a Fourier transform

f(x) Fx,

Regular group convolution
>

h

Sample owtput on H-griid

“absorb” weights | (%) (k% )(x,0)
A /\Y A
fx) = frx) W

(H-Fourier correlation)

Nﬁ-)r. \

” S
£
TN ; \‘ 1 4
/4 ~ % $ A
{)A ) v ‘A ‘\»V{
Appyr 4
T



From regular to steerable via a Fourier transform
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From regular to steerable via a Fourier transform
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Steerable group convolutions




Steerable group convolutions
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If A is linear
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Steerable group convolutions

If & is linear
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Steerable group convolutions

If & is linear
HF1(x) = J k(x, X)f(x)dx’
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Steerable group convolutions

Group convolution Z[f](g) =
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Abstract

We present a convolutional network that is equivariant to rigid body motions.
The model uses scalar-, vector-, and tensor fields over 3D Euclidean space to
represent data, and equivariant convolutions to map between such representations.
These SE(3)-equivariant convolutions utilize kernels which are parameterized
as a lincar combination of a complete steerable kernel basis, which is derived
analytically in this paper. We prove that equivariant convolutions are the most
general equivariant linear maps between ficlds over B?. Our experimental results
confirm the effectiveness of 3D Steerable CNNs for the problem of amino acid
propensity prediction and protein structure classification, both of which have
inherent SE(3) symmetry.

1 Introduction

Increasingly, machine leaming technigues are being applied in the natural sciences. Many problems
in this domain, such as the analysis of protein structure, exhibit exact or approximate symmetries.
It has long been understood that the equations that define a model or natural law should respect
the symmetries of the system under study, and that knowledge of symmetries provides a powerful
constraint on the space of admissible models. Indeed, in theoretical physics, this idea is enshrined
as a fundamental principle, known as Einstein’s principle of general covariance. Machine learning,
which is, like physics, concerned with the induction of predictive models, is no different: our models
must respect known symmetrics in order to produce physically meaningful results.

A lot of recent work, reviewed in Sec. @ has focused on the problem of developing equivariant
networks, which respect some known symmetry. In this paper, we develop the theory of SE(3)-
cquivariant networks. This is far from trivial, because SE(3) is both non-commutative and non-
compact. Nevertheless, at run-time, all that is required to make a 3D convolution equivariant using our
method, is to parameterize the convolution kemel as a linear combination of pre-computed steerable
basis kernels. Hence, the 3D Stecrable CNN incorporates equivariance to symmetry transformations
without deviating far from current engineering best practices.

The architectures presented here fall within the framework of Steerable G-CNNs [8] 10, 40, 45].
which represent their input as ficlds over a homogencous space ([R* in this case), and use steerable

* Equal Coatribution. MG imtiated the project, denved the Kemnel space constraint, wrote the first network
implementation and ran the Shrecl7 expeniment. MW solved the kemel constraint analyucally, designed the
anti-aliased kernel sampling in discrete space and coded / ran many of the CATH expenments.

Source code 1s avalable at https: //github.con/nariogeiger/se3cnn

32nd Coaference on Neural Information Processang Systems (NeurlPS 2018), Montréal, Canada.



Steerable group convolutions
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Abstract

The big empirical success of group equivaniant networks has led in recent years to
the sprouting of a great vanety of equivariant network architectures. A particular
focus has thereby been on rotation and reflection equivariant CNNs for planar
images. Here we give a general description of E(2)-equivariant convolutions in
the framework of Steerable CNNs. The theory of Steerable CNNs thereby yields
constraints on the convolution kernels which depend on group representations
describing the transformation laws of feature spaces. We show that these constraints
for arbitrary group representations can be reduced to constraints under irreducible
representations. A general solution of the kernel space constraint 1s given for
arbitrary representations of the Euclidean group E(2) and its subgroups. We
implement a wide range of previously proposed and entirely new equivaniant
network architectures and extensively compare their performances. E(2)-steerable
convolutions are further shown to yield remarkable gains on CIFAR-10, CIFAR-100
and STL-10 when used as drop in replacement for non-equivanant convolutions.

1 Introduction

The equivariance of neural networks under symmetry group actions has in the recent years proven
to be a fruitful prior in network design. By guarantecing a desired transformation behavior of
convolutional features under transformations of the network input, equivanant networks achieve
improved generalization capabilities and sample complexities compared to their non-equivanant
counterparts. Due to their great practical relevance, a big pool of rotation- and reflection- equivariant
models for planar images has been proposed by now. Unfortunately, an empincal survey, reproducing
and comparing all these different approaches, is still missing.

An important step in this direction is given by the theory of Steerable CNNs [1. 2,13, 4, 5] which
defines a very general notion of equivarniant convolutions on homogencous spaces. In particular,
steerable CNNs descrnibe E(2)-equivariant (i.c. rotation- and reflection-cquivariant) convolutions on
the image plane R*. The feature spaces of steerable CNNs are thereby defined as spaces of feature
fields, charactenized by a group representation which determines their transformation behavior under
transformations of the input. In order to preserve the specified transformation law of feature spaces,
the convolutional kernels are subject to a linear constraint, depending on the corresponding group
representations. While this constraint has been solved for specific groups and representations |1, (2],
no general solution strategy has been proposed so far. In this work we give a general strategy which
reduces the solution of the kernel space constraint under arbitrary representations to much simpler
constraints under single, irreducible representations.

Specifically for the Euclidean group E(2) and its subgroups, we give a general solution of this kernel
space constraint. As a result, we arc able to implement a wide range of equivariant models, covering
regular GCNNs [6,7, 18,19, 110, 11], classical Steerable CNNs |1], Harmonic Networks [12], gated
Harmonic Networks [2], Vector Field Networks [13], Scattening Transforms [14, 15, 16,17, /18] and
entirely new architectures, in one unified framework. In addition, we are able to build hybrid models,
mixing different field types (representations) of these networks both over layers and within layers.

* Equal contribution, author ordering determined by random number generator.
 This research has been conducted during an internship at QUVA lab, University of Amsterdam.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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ABSTRACT

Equivariance 1s becoming an increasingly popular design choice to build data
efficient neural networks by exploiting prior knowledge about the symmetries of
the problem at hand. Euclidean steerable CNNs are one of the most common classes
of equivariant networks. While the constraints these architectures need to satisfy
are understood, existing approaches are tailored to specific (classes of) groups. No
generally applicable method that is practical for implementation has been described
so far. In this work, we generalize the Wigner-Eckart theorem proposed in Lang &
Weiler (2020), which charactenzes general (G-steerable kemel spaces for compact
groups (s over their homogencous spaces, to arbitrary (G-spaces. This enables us to
directly parametenze filters in terms of a band-limited basis on the whole space
rather than on GG's orbits, but also to casily implement steerable CNNs equivariant
to a large number of groups. To demonstrate its generality, we instantiate our
method on a variety of isometry groups acting on the Euclidean space ®*. Our
framework allows us to build E(3) and SE(3)-steerable CNNs like previous works,
but also CNNs with arbitrary G < O(3)-steerable kemnels. For example, we build
3D CNNs equivanant to the symmetries of platonic solids or choose G = S0(2)
when working with 3D data having only azimuthal symmetries. We compare these
models on 3D shapes and molecular datascts, observing improved performance by
matching the model's symmetries to the ones of the data.

I INTRODUCTION

In machine learning, it is common for learning tasks to present a number of symmetries. A symmetry
in the data occurs, for example, when some property (e.g., the label) does not change if a set of
transformations 1s applied to the data itself, e.g. translations or rotations of images. Symmetrics are

algebraically described by groups. If prior knowledge about the symmetries of a task is available,
it is usually beneficial to encode them in the models used (Shawe-Taylor| 1989 Cohen & Welling,

2016a). The property of such models is referred to as equivariance and 1s obtained by introducing
some equivariance constraints in the architecture (see Eq.[2). A classical example are convolutional
neural networks (CNNs), which achieve translation equivarniance by constraining linear layers to be
convolution operators. A wider class of equivariant models are Euclidean steerable CNNs (Cohen &
Welling, 2016b: Weiler et al., 2018a; Weiler & Cesa, 2019; Jenner & Weiler, 2022), which guarantee
cquivariance to isometries R" » 7 of a Euclidean space R", i.c., to translations and a group G of
origin-preserving transformations, such as rotations and reflections. As proven in Weiler et al_ (2018a:
2021); Jenner & Weiler (2022), this requires convolutions with G-steerable (equivanant) kemels.

Our goal is developing a program to parametenize with minimal requirements arbitrary G-steerable
kernel spaces, with compact (&, which are required to implement K™ % & equivaniant CNNs. Lang &
Weiler (2020) provides a first step in this direction by generalizing the Wigner-Eckart theorem from
quantum mechanics to obtain a general technique to parametnize (G-steerable kernel spaces over orbits
of a compact 5. The theorem reduces the task of building steerable kernel bases to that of finding some
pure representation theoretic ingredients. Since the equivariance constraint only relates points g.z €
R"™ in the same orbit G.x € R", a kernel can take independent values on different orbits. Fig.[1]shows

"Qualcomm Al Research is an initiative of Qualcomm Technologies, Inc.
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Equivariant neural networks guarantee a specified transformation behavior of their feature spaces under
transformations of their input. For instance, classical convolutional neural networks (CNNs) are by design
equivariant to translations of their input. This means that a translation of an image leads to a corresponding
translation of the network's feature maps. This package provides implementations of neural network modules
which are equivariant under all isometries E(2) of the image plane R2 and all isometries E(3) of the 3D space R3 , Gabriele Cesa Leon Lang Maurice Weiler

A PROGRAM TO BUILD
E(n)-EQUIVARIANT STEERABLE CNNS
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gcesa@qgqti.qualcomm.com

In contrast to conventional CNNs, E(n)-equivariant models are guaranteed to generalize over such
transformations, and are therefore more data efficient.
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escnn is a PyTorch extension for equivariant deep learning. escnn is the successor of the e2cnn library, which only p ‘ —

Equivariant neural networks guarantee a specified transformation behavior of their feature spaces under
transformations of their input. For instance, classical convolutional neural networks (CNNs) are by design
equivariant to translations of their input. This means that a translation of an image leads to a corresponding

translation

which are equivariant under all isometries E(2) of the image plane R? and all isometries E(3) of the 3D space R3 ,

that is, under translations, rotations and reflections (and can, potentially, be extended to all isometries E(n) of R" ). g
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transform
Getting Started
The featur
characteri escnn is easy to use since it provides a high level user interface which abstracts most intricacies of group and
gray-scale representation theory away. The following code snippet shows how to perform an equivariant convolution from an
RGB-image to 10 regular feature fields (corresponding to a group convolution).
from escnn import gspaces # 1
from escnn import nn # 2
import torch # 3
# 4
r2_act = gspaces.rot2dOnR2(N=8) # 5
feat_type_in = nn.FieldType(r2_act, 3%[r2_act.trivial_repr]) # 6
feat_type_out = nn.FieldType(r2_act, 10%[r2_act.regular_repr]) # 7
# 8
Instead of : conv = nn.R2Conv(feat_type_in, feat_type_out, kernel_size=5) # 9
feature sp relu = nn.RelLU(feat_type_out) # 10
# 11
= torch.randn(16, 3, 32, 32) # 12
x = feat_type_in(x) # 13
# 14
y = relu(conv(x)) # 15

of the network's feature maps. This package provides implementations of neural network modules

Line 5 specifies the symmetry group action on the image plane R2 under which the network should be equivariant.

We choose the cyclic group Cg, which describes discrete rotations by multiples of 2n/8. Line 6 specifies the input

feature field types. The three color channels of an RGB image are thereby to be identified as three independent

scalar fields, which transform under the trivial representation of Cg. Similarly, the output feature space isin line 7

specified to consist of 10 feature fields which transform under the regular representation of Cg. The Cg-equivariant

convolution is then instantiated by passing the input and output type as well as the kernel size to the constructor

(line 9). Line 10 instantiates an equivariant ReLU nonlinearity which will operate on the output field and is therefore

passed the output field type.
EEEEEEEEEEEEEEEEEEEEEEEEREEEEECSEm——————
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ABSTRACT

Equivariance 1s becoming an increasingly popular design choice to build data
efficient neural networks by exploiting prior knowledge about the symmetries of
the problem at hand. Euclidean stecrable CNNs are one of the most common classes
of equivariant networks. While the constraints these architectures need to satisfy
are understood, existing approaches are tailored to specific (classes of) groups. No
generally applicable method that is practical for implementation has been described
so far. In this work, we generalize the Wigner-Eckart theorem proposed in Lang &
Weiler {2020), which charactenizes general G-steerable kemel spaces for compact
groups (& over their homogencous spaces, to arbitrary GG-spaces. This enables us to
directly parametenze filters in terms of a band-limited basis on the whole space
rather than on (&'s orbits, but also to easily implement steerable CNNs equivanant
to a large number of groups. To demonstrate its generality, we instantiate our
method on a variety of isometry groups acting on the Euclidean space B'. Our
framework allows us to build E(3) and SE(3)-steerable CNNs like previous works,
but also CNNs with arbitrary G < O(3)-steerable kemnels. For example, we build
3D CNNs equivanant to the symmetries of platonic solids or choose G = S0O(2)
when working with 3D data having only azimuthal symmetries. We compare these
models on 3D shapes and molecular datasets, observing improved performance by
matching the model's symmetries to the ones of the data.
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Equivariant neural networks guarantee a specified transformation behavi
transformations of their input. For instance, classical convolutional neura
equivariant to translations of their input. This means that a translation of |
translation of the network's feature maps. This package provides implem
which are equivariant under all isometries E(2) of the image plane R2 and
that is, under translations, rotations and reflections (and can, potentially,

I a2 - .

- — - - 4
In con 1

transf .
Getting Started
The fe
charal escnn is easy to use since it provides a high level user interfad

gray-¢ representation theory away. The following code snippet shows
RGB-image to 10 regular feature fields (corresponding to a grt

from escnn import gspaces
from escnn import nn
import torch

r2_act = gspaces.rot2dOnR2(N=8)
feat_type_in = nn.FieldType(r2_act, 3%[r2_act.tri
feat_type_out = nn.FieldType(r2_act, 10%[r2_act.regl

Feature field and induced representation

 f(x, k)

Regular G feature maps: f(X, &) considered so far can be considered feature fields.

B Aar otation

(Z )X, h) = fh™'(x' = x), k™' )

H fUx) =f(x, )
Regular H feature fields: Let f(x) = f(x, - ) be the field of functions f(x) : H — R on the subgroup H, 7

then the functions (fibers) transform via the regular representation Sff ( recall. L f(h") =fh~'h) )

(Z N ) <= (IndG[ Zf 1(x,h) 7)) (x)

~ f.(-\") — (’: I_f‘ I( \)
Steerable H feature fields: Since the fibers f(x) are functions on H we can represent them via their Fourier f(x) / i
conv = nn.R2C feat_type_in, feat_t t, kerne . yy . . . .
Instea . A g e coefficients f(X) = F 5[ f7(x)]. These vectors of coefficients transform via irreps p(h) = @, p,(h) 5
relu nn.RelLU(feat_type_out) A~
featur ’,"‘ -~ N
_ ’ Gr cpH Ay G 2\ i e %
ﬂ x = torch.randn(16, 3, 32, 32) (Z,. /)X, h) = (IndH[ Z; (x, h)f)(x) = (IndH[ p(h) ](x,h)f)(x) A !‘ v\« i}
x = feat_type_in(x) ’k P \\ N y
y = relu(conv(x)) W e A
k...,r’
. .po o o . . . Weller (2020 des rs this di by gencraliz y - Ecka 0 h N
Line 5 specifies the symmetry group action on the image plane [R“ under which the network should be equivariant. quantums mechanics t obtain a ganral technique to parametrize G stecrable kerel spaccs over orbits Pr—
. . . . . . . vpe . f G. The the d the task of building s ble k 1 bases to that of findi ! .
We choose the cyclic group Cg, which describes discrete rotations by multiples of 2m/8. Line 6 specifies the input :u:cc:cngf;c;mation iheoretic ::g:"cc;:cms.mssin:c the c;':i-;ff;:ofcomm oilt)("rclaz:t(c)s poit:l:sggs..;‘mg '“"°gd°‘ S el
feat field t The th l h | f RGBi th bv to be identified th ind dent K™ in the same orbit G.x € R", a kernel can take independent values on different orbits. Fig.[1]shows :wnt‘)rk:llsi—;?‘;::cgi
eature field types. The three color channels of an image are thereby to be identified as three independen e T Toeeeii o= Siimive of el Tochmalogios b Bia iy ped
uld hybrid models,

scalar fields, which transform under the trivial representation of Cg. Similarly, the output feature space is in line 7

specified to consist of 10 feature fields which transform under the regular representation of Cg. The Cg-equivariant

convolution is then instantiated by passing the input and output type as well as the kernel size to the constructor

(line 9). Line 10 instantiates an equivariant ReLU nonlinearity which will operate on the output field and is therefore

passed the output field type.
e —

gnd within layers.
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Steerable group convolutions

Type-0 field usual 2D feature map
(e.g. for segmentation)

- @

Regular feature types
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Type-1 vector fields

Steerable (irrep) feature types (e.g. force/velocity vectors)
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Feature field types

Complex irreps
» A feature field is defined by its type p

» Feature fields, each of their own type p;, can be stacked:
* should be thought of as the channels in standard CNNs

* The sub-vectors/channels in these fields:

o _ Real irreps
e live in their own sub-vector spaces V,

1
 transform by their own representations p;,
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Feature field types

Complex irreps
A feature field is defined by its type p

Feature fields, each of their own type p;, can be stacked: |
* should be thought of as the channels in standard CNNs R

The sub-vectors/channels in these fields:

L . Real irreps
e live in their own sub-vector spaces V,

B
 transform by their own representations p;,

—siné cosé

Example notations
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Feature field 1

o A feature field is defined by its

o Feature fields, each of their ov
e should be thought of as thi

* The sub-vectors/channels in il
e live In thelr own sub-vectol

o transform by their own rep

« Example notations (p, denote IEPS)T———m—

p=4p, @9 & ..

column ol the maltrices separalely transiorms according to (12). Une ol the key deas ol the present
paper 1s to take this property as the basis for the definition of covariance to rotations in neural nets.
Thus we have the following definition.

Clebsch-Gordan Nets: a Fully Fourier Space
Spherical Convolutional Neural Network

Definition 1 Let N be an S — | layer [eed-forward neural network whose inpud 1y a spherical

Junction [7: 8% — C% We say that N iy a generalized SO(3)=covariant spherical CNN if the

outpur of each layer s can be expressed as a collection of vectors

f:_:fu:-fo:zf.;'r.fflffz’ffil’ “““““ """.E"'f::" (14)
- ~ o Ny ~ -
F=( =1 i—L

where each [} . & T34 s q pe—covariant vector in the sense that if the input image is rotated by
some mtalivn‘R then | ¢ 3 iransforms s

fii o plR)-F2 (15)

We call the individual f;  vectors the irreducible fragments of f°, and the integer vector
= (14,71, .., 7] ) counting the number of fragments for each € the type of f*.

There are a few things worth noting about Definition 1. First, since the (15) maps are linear, clearly any
SO(3)—covariant spherical CNN is equivariant to rotations, as defined in the introduction. Second.

( Steerable G-CNNs | General )

define np,=p, @ p, D ... D p,

-

-

N times
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Abstract

Recent work by Cohen et al. [1] has achieved state-of-the-art results for learning
spherical images in a rotation invariant way by using ideas from group represen-
tation theory and noncommutative harmonic analysis. In this paper we propose
a generalization of this work that generally exhibits improved performace, but
from an implementation point of view is actually simpler. An unusual feature
of the proposed architecture is that it uses the Clebsch-Gordan transform as its
only source of nonlinearity, thus avoiding repeated forward and backward Fourier
transforms. The underlying ideas of the paper generalize to constructing neural
networks that are invariant to the action of other compact groups.

1 Introduction

Despite the many recent breakthroughs in deep leaming, we still do not have a satisfactory understand-
ing of how deep neural networks are able to achieve such spectacular perfomance on a wide range of
learning problems. One thing that is clear, however, is that certain architectures pick up on natural
invariances in data, and this is a key component to their success. The classic example is of course
Convolutional Neural Networks (CNNs) for image classification [2]. Recall that, fundamentally, each
layer of a CNN realizes two simple operations: a linear one consisting of convolving the previous
layer's activations with a (typically small) leamable filter, and a nonlinear but pointwise one, such
as a ReLU operator”. This architecture is sufficient to guarantee translation equivariance, meaning
that if the input image is translated by some vector £, then the activation pattern in each higher layer
of the network will translate by the same amount. Equivariance is crucial to image recognition for
two closely related reasons: (a) It guarantees that exactly the same filters are applied to each part
the input image regardless of position. (b) Assuming that finally, at the very top of the network, we
add some layer that is translation invariant, the entire network will be invariant, ensuring that it can
detect any given object equally well regardless of its location.

Recently, a number of papers have appeared that examine equivariance from the theoretical point
of view, motivated by the understanding that the natural way to generalize convolutional networks
to other types of data will likely lead through generalizing the notion of equivariance itself to other
transformation groups [3, 4, 5, 6, 7]. Lettung f* denote the activations of the neurons in layer s
of a hypothetical generalized convolution-like neural network, mathematically, equivariance to a
group ( means that if the inputs to the network are transformed by some transformation g € G,
then f* transforms to T/ ( f*) for some fixed set of linear transformations {7 } .= ;. s(Note that in
some contexts this is called “covariance”, the difference between the two words being only one of
emphasis.)

“Authors are arranged alphabetically
*Real CNN s typically of course have multiple channels, and correspondingly multiple filters per layer, but
this does not fundamentally change the network's invariance properties.
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Feature field types

Complex irreps

A feature field is defined by its type p

Feature fields, each of their own type p;, can be stacked:
* should be thought of as the channels in standard CNNs

The sub-vectors/channels in these fields:
e live in their own sub-vector spaces V,

 transform by their own representations p;,
Example notations

P=pP1OpP,Dp: O ...

p=4p, @9, @ ...
define np,=p, @ p, D ... D p,

n times
P = npy
p=nFH

Real irreps
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