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Regular group convolutions: 
Domain expanded feature maps

Steerable group convolutions: 
Co-domain expanded feature 
maps (feature fields)

f (l) : ℝd × H → ℝ

̂f (l) : ℝd→VH

added axis

vector field instead of scalar field 
(vectors in  transform via group  representations)VH H
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If  is linear 


 


and equivariant




Then it is a group convolution


 

𝒦

𝒦[ f ](g) = ∫G
k(g, g′￼)f(g)dg

𝒦[ℒg f ] = ℒg𝒦[ f ]

𝒦[ f ](g) = ∫G
k(g−1g′￼)f(g)dx′￼dg

Recall lecture 1.7 (Group convolutions are all you need)
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but with kernel  satisfying constraint
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Problem: The -steerability constraint!    [1,2]G

[1] Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S. Cohen. 3D steerable CNNs: Learning rotationally equivariant features in volumetric data. In Conference on Neural Information Processing Systems (NeurIPS), 2018a.

[2] Cesa, G., Lang, L., & Weiler, M. (2021, September). A Program to Build E (N)-Equivariant Steerable CNNs. In International Conference on Learning Representations.
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Type-1 vector fields 

(e.g. force/velocity vectors)Steerable (irrep) feature types

f

Type-0 field usual 2D feature map

(e.g. for segmentation)

https://github.com/QUVA-Lab/escnn


• A feature field is defined by its type 


• Feature fields, each of their own type , can be stacked:

• should be thought of as the channels in standard CNNs


• The sub-vectors/channels in these fields:

• live in their own sub-vector spaces 

• transform by their own representations 


• Example notations


          ( Steerable G-CNNs | Fourier )


              ( Steerable G-CNNs | General )


              define    


                                    ( Normal CNNs with isotropic kernels )


                                 (Regular G-CNNs)

ρ

ρl

Vl
ρl

ρ = ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ …
ρ = 4ρ0 ⊕ 9ρ1 ⊕ …

nρl = ρl ⊕ ρl ⊕ … ⊕ ρl

n times
ρ = nρ0

ρ = nℒH

Feature field types
Complex irreps

Real irreps

Regular reps

Different types ρ
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