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Example: Steerable basis on S 1 (circular harmonics)
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Derive Q (the irreps) yourself through an

eigendecomposition of the circular shift matrix

- Michael Bronstein

JUl26,2020 - O9mnread * - € Listen

Deriving convolution from first principles

Have you ever wondered what is so special about convolution? In this
post, | derive the convolution from first principles and show that it
naturally emerges from translational symmetry.
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https://towardsdatascience.com/deriving-
convolution-from-first-principles-41f124888028

DISCOVERING TRANSFORNMS:
A TUTORIAL ON CIRCULANT MATRICES, CIRCULAR
CONVOLUTION, AND THE DISCRETE FOURIER TRANSFORM

BASSAM BAMIEIT®

4.1. Construction of Eigenvectors/Eigenvalues of 5™. Let w be an eigen-
vector (with cigenvalue A) of the shift operator $°. Note that it is also an ecigenvector
(with eigenvalue A') of any power (S™)° of §*. Applying the definition (3.3) to the
relation S*w — Aw will reveal that an eigenvector w has a very special structure

P S*'w = Aw > ) — A uy. kef,.
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L.e. cach entry wy, 1 of w is equal to the previons enbry wy multiplied by the cigenvalue
A. These relations can be used to compute all eigenvectors/eigenvalues of S*. First,
observe that although (4.1) is valid for all [ € Z, this relation “repeats” for [ > n. In
particular. for { = n we have for each index k

(4.2) Whin — AW = wp — A'up

since k +n =, k. Now since the vector w # 0, then for at least one index &k, wi # 0,
and the last equality implics that A™ — 1, i.c. anv cigenvalue of S must be an nth
root of unity

At =1 — A= pm = =" me L,

https://arxiv.org/pdf/1805.05533.pdf
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