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Group Equivariant Deep Learning

Lecture 1 - Regular group convolutions

Lecture 1.7 - Group convolutions are all you need!


https://uvadl2c.github.io/

Classical artificial neural networks

What's my input? x0 e 2 =?

Image analyst: xX0e X = [|_2(|R2)

Naive deep learner: x0 € & = R’%*
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Classical artificial neural networks

iInput vector
What’s my input? x0e 2 =7? %0 output probability vector

Image analyst: X0 e X =1L,(R?% lteratively transform the vector via

[
X' = p(Ky, X'=1 + b)

Naive deep learner: x0 € & = R’ /

[ [—1
Linear map: matrix-vector multiplication with K, € RVXN



A fully connect layer as convolution on 1D signal

- Way too many degrees of freedom!

/ - Doest not leverage/preserve structure in data
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A fully connected layer as convolution on 1D signal

Convolution as linear operator o
+ Localized transformations
+ Shift equivariance

+ Sparsification of the linear operator
+ Weightsharing

Y =
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Classical artificial NNs in the continuous world

Working with vectors x € & = RY

lteratively transform the vector in RN via

y = (K x + b
- -~

—
Linear map: matrix-vector multiplication with K &

Y = Z K;;x;

RNyXNx



Classical artificial NNs in the continuous world

Working with feature maps f € X = ,(X)

mitotic

lteratively transform the feature map in L,(X)

]mut — QD(Kfm n bl)

/
—
Linear map: kernel operator with kernel in L, (Y, X)

(Kf)(y) = J k(y, x)f(x)dx

X



Classical artificial NNs in the continuous world

Working with feature maps f € X = ,(X)

mitotic

lteratively transform the feature map in L,(X)

We want K to be equivariant! o = p(Kf™ + b')

/
—
Linear map: kernel operator with kernel in L, (Y, X)

(Kf)(y) = J k(y, x)f(x)dx

X



Neural Networks for Signal Data

Let’s build neural networks for signal
data via the layers of the form:

fl+1 _ U(:%fl+ bl)

The linear map has to be an integral
transform with a two-argument kernel

FH LX) = L, (V)N (FS)y) = J k(y, x)f(x)dx

X



Theorem (G-convs are all you need)

Bekkers ICLR 2020, Thm. 1*

Let & : L,(X) — L,(Y) map between signals on homogeneous spaces of G.

Let homogeneous space Y = G/H such that H = Stab(y,) for some chosen origin
Yo € Yandletg, € Gsuchthat V, ., :y = g V.

Then A is equivariant to group G if and only if:

1. It is a group convolution: [ Zf](y) = J' k(gy_lx)f(x)dx
X

2. The kernel satisfies a symmetry constraint:  V, : k(hx) = k(x)
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X



Proof (G-convs are all you need)

First of all, & is an integral transform: K1) = J k(y, x)f(x)dx
X

Veeg and Vigp (xy; (F o L3N ) = (&7 o H)(f)
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Proof (G-convs are all you need)

First of all, & is an integral transform: K1) = J k(y, x)f(x)dx
X

Vee and Vg (xy:

(inrh.s. x « g_lx)

J k(y, x)f(g ™" x)dx =J k(g™'y, g™ 0f(g™ W) qpr—dx.
X X

1 7. 1 —1
Tera 8T8 X)

Since this should hold or all f € [,(X) we have Vge(;: k(y,x) =
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Since G acts transitively on Y we have that ‘v’y,yoey = ¢,€G such that y = g,y

/‘y

|
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Thus  k(y,x) = k(g, yp, X)
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Since G acts transitively on Y we have that ‘v’y,yoey = ¢,€G such that y = g,y

Thus k(y, x)
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Proof (G-convs are all you need)

Since G acts transitively on Y we have that ‘v’y,yoey = ¢,€G such that y = g,y

Thus k(y, x)
/ o Y
1 —1
o = Toetz. k(g, " x)
Y0
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Proof (G-convs are all you need)

Since G acts transitively on Y we have that ‘v’y,yoey = ¢,€G such that y = g,y

Thus k(y, x)

1 —1

If Y = G/H then there could be a whole subgroup H = Stab, y, that leaves y, invariant

k(h~x)

Vien k(h Voo X) = ]’E(Y()a X) < k(x) = " det /1]



Theorem (G-convs are all you need)

Bekkers ICLR 2020, Thm. 1*

Let & : L,(X) — L,(Y) map between signals on homogeneous spaces of G.

Let homogeneous space Y = G/H such that H = Stab(y,) for some chosen origin
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Types of layers K : [I_Z(IRZ) — [I_Z(IRZ)

(X =Y = G/H)
Isotropic/Constraint convolutions on spaces of lower
dimension than G, Vg : k(hx) = k(x)

11



Types of layers

(X =Y = G/H)
Isotropic/Constraint convolutions on spaces of lower Example 2D CNN

X = R? = SE(2)/SO(2)

dimension than G, Vg : k(hx) = k(x)

K : L,(R% = L,(R?
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Types of layers K : [I_z(le) —> [I_z(le)

(X =Y = G/H)
Isotropic/Constraint convolutions on spaces of lower Example 2D CNN
dimension than G, V,_;; : k(hx) = k(x) X = R* = SE(2)/SO(2)

Conv2D( input |,
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X =

Types of layers K : [,(R*) — L,(R?)

Y = G/H)
Isotropic/Constraint convolutions on spaces of lower Example 2D CNN
dimension than G, Vg : k(hx) = k(x) = R2 = SE(2)/SO(2)

/. o

Conv2D( input |, . ) rotate
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Types of layers K : I]_Z(IRZ) —> [I_Q(IRZ)

(X =Y = G/H)
Isotropic/Constraint convolutions on spaces of lower Example 2D CNN
dimension than G, V,_;; : k(hx) = k(x) X = R* = SE(2)/SO(2)
Conv2D( input |, ' ) rotate
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Types of layers K : I]_Z(IRZ) —> [I_Q(IRZ)

(X =Y = G/H)
Isotropic/Constraint convolutions on spaces of lower Example 2D CNN
dimension than G, V,_;; : k(hx) = k(x) X = R* = SE(2)/SO(2)
Conv2D( input , ' ) rotate rotate

v v
O,
>
11



X =

Types of layers

K : Ly(R) = Ly(R?)

Y = G/H)
IsotropiciConstraint convalusers On spaces of lower Example 2D CNN
dimensionsther™C, V, o7 =k(Xx) = R? = SE(2)/SO(2)

Conv2D( input |,
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Types of layers

K : L,(R*) = Ly(R?)

Y = G/H)
IsotropiciConstraint convalusers On spaces of lower Example 2D CNN
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Types of layers K : I]_Z(IRZ) —> [I_Q(IRZ)

(X =Y = G/H)
Isotropi onstraint convoludiet™S On spaces of lower Example 2D CNN

dimensiopstire =k(X) = R? = SE(2)/SO(2)

/ 0 L

rotate
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Types of layers K : I]_Z(IRz) — [I_z(IRZ)

(X =Y = G/H)
Isotropi onstraint conve
dimensiors=trer ™G

0N spaces of lower Example 2D CNN
=k(x) X = R? = SE(2)/SO(2)
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Conv2D( input |, 0 ) rotate rotate
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Types of layers K : I]_z(le) — [I_z(IRZ)

(X =Y = G/H)
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Types of layers K : I]_z(le) — [I_z(IRZ)
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Types of layers

(X =G/H,Y = G)

Lifting convolution. No constraints on k.

K : L, (R% = L,(SE2))

(k %)) = (L 70 )y e

350(2)_>[L2(R2)
0

planar rotation
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Types of layers

X =Y=0aG)

Group convolutions. No constraints on k.

K :L,SEQ2)) = L,(SE(2))

/ (k% f)(x) = (F 7RO 5800
D
ey >
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Types of layers K : [,(SE(2)) — [I_Z([Rz)

(X =G,Y = G/H)

Projection layer. Mean pooling over H.



Types of layers

(X =Y = G/H) ® @
Isotropic/Constraint convolutions on spaces of lower .. e
dimension than G, Vg : k(hx) = k(x) . %

X = G/H,Y = G) ES
Lifting convolution. No constraints on k. o &

=y =

X =Y=0G) Tf
Group convolutions. No constraints on k. iy

W,

(X =G,Y = G/H)

Projection layer. Mean pooling over H.
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The most expressive group equivariant
architectures are obtained by lifting
the feature maps to the group
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Max-pooling over rotations

guarantees rotation invariance
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Conclusion

If you want to build equivariant neural networks
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Conclusion

If you want to build equivariant neural networks

Group ¢ nvolut ons are all you need!



