

Group Equivariant Deep Learning

Lecture 1 - Regular group convolutions

Lecture 1.7 - Group convolutions are all you need!

Equivariant linear layers between feature maps are group convolutions

Classical artificial neural networks

What's my input? $\underline{x}^0 \in \mathcal{X} = ?$

Image analyst: $\underline{x}^0 \in \mathcal{X} = \mathbb{L}_2(\mathbb{R}^2)$

Naive deep learner: $\underline{x}^0 \in \mathcal{X} = \mathbb{R}^{784}$

Classical artificial neural networks

What's my input? $x^0 \in \mathcal{X} = ?$

$$x^0 \in \mathcal{X} = ?$$

input vector

Image analyst:

$$\underline{x}^0 \in \mathcal{X} = \mathbb{L}_2(\mathbb{R}^2)$$

Naive deep learner: $\underline{x}^0 \in \mathcal{X} = \mathbb{R}^{784}$

Classical artificial neural networks

What's my input? $\underline{x}^0 \in \mathcal{X} = ?$

= ?

input vector

Image analyst:

$$\underline{x}^0 \in \mathcal{X} = \mathbb{L}_2(\mathbb{R}^2)$$

Naive deep learner: $\underline{x}^0 \in \mathcal{X} = \mathbb{R}^{784}$

Iteratively transform the vector via

$$\underline{x}^l = \varphi(K_{\mathbf{w}_l}\underline{x}^{l-1} + \underline{b}^l)$$

Linear map: matrix-vector multiplication with $K_{\mathbf{w}_l} \in \mathbb{R}^{N^l \times N^{l-1}}$

A fully connect layer as convolution on 1D signal

A fully connected layer as convolution on 1D signal

Convolution as linear operator

- + Localized transformations
- + Shift equivariance
- + Sparsification of the linear operator
- + Weightsharing

$$\underline{y} = \varphi($$

$$K_{\mathbf{w}}$$

$$\underline{x} + \underline{b}$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \end{pmatrix} = \varphi \begin{pmatrix} \begin{pmatrix} w_1 & w_2 & w_3 & 0 & 0 & \dots \\ 0 & w_1 & w_2 & w_3 & 0 & \dots \\ 0 & 0 & w_1 & w_2 & w_3 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ \vdots \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \end{pmatrix}$$

A fully connected layer as convolution on 1D signal

Convolution as linear operator

- + Localized transformations
- + Shift equivariance
- + Sparsification of the linear operator
- + Weightsharing

$$\underline{y} = \varphi($$

$$K_{\mathbf{w}}$$

$$\underline{x} + \underline{b}$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \end{pmatrix} = \varphi \begin{pmatrix} \begin{pmatrix} w_1 & w_2 & w_3 & 0 & 0 & \dots \\ 0 & w_1 & w_2 & w_3 & 0 & \dots \\ 0 & 0 & w_1 & w_2 & w_3 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ \vdots \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \end{pmatrix}$$

Classical artificial NNs in the continuous world

Working with vectors $x \in \mathcal{X} = \mathbb{R}^{N^x}$

Iteratively transform the **vector** in \mathbb{R}^{N^x} via

$$\underline{y} = \varphi(K\underline{x} + \underline{b}^l)$$

Linear map: matrix-vector multiplication with $K \in \mathbb{R}^{N^y \times N^x}$

$$y_j = \sum_i K_{i,j} x_i$$

Working with feature maps $f \in \mathcal{X} = \mathbb{L}_2(X)$

Iteratively transform the **feature map** in $\mathbb{L}_2(X)$

$$f^{out} = \varphi(Kf^{in} + b^l)$$

Linear map: kernel operator with kernel in $\mathbb{L}_1(Y,X)$

$$(Kf)(y) = \int_X k(y, x) f(x) dx$$

Classical artificial NNs in the continuous world

Working with vectors $x \in \mathcal{X} = \mathbb{R}^{N^x}$

Iteratively transform the **vector** in \mathbb{R}^{N^x} via

$$\underline{y} = \varphi(K\underline{x} + \underline{b}^l)$$

Linear map: matrix-vector multiplication with $K \in \mathbb{R}^{N^y \times N^x}$

$$y_j = \sum_i K_{i,j} x_i$$

Working with feature maps $f \in \mathcal{X} = \mathbb{L}_2(X)$

Iteratively transform the **feature map** in $\mathbb{L}_2(X)$

$$f^{out} = \varphi(Kf^{in} + b^l)$$

Linear map: kernel operator with kernel in $\mathbb{L}_1(Y,X)$

$$(Kf)(y) = \int_X k(y, x) f(x) dx$$

Classical artificial NNs in the continuous world

Working with vectors $x \in \mathcal{X} = \mathbb{R}^{N^x}$

Iteratively transform the **vector** in \mathbb{R}^{N^x} via

We want K to be equivariant!

Linear map: matrix-vector multiplication with $K \in \mathbb{R}^{N^y \times N^x}$

$$y_j = \sum_i K_{i,j} x_i$$

Working with feature maps $f \in \mathcal{X} = \mathbb{L}_2(X)$

Iteratively transform the **feature map** in $\mathbb{L}_2(X)$

$$f^{out} = \varphi(Kf^{in} + b^l)$$

Linear map: kernel operator with kernel in $\mathbb{L}_1(Y,X)$

$$(Kf)(y) = \int_X k(y, x) f(x) dx$$

Neural Networks for Signal Data

 $\mathscr{H}: \mathbb{L}_2(X)^{N_l} \to \mathbb{L}_2(Y)^{N_{l+1}}$

Let's build neural networks for signal data via the layers of the form:

$$\underline{f}^{l+1} = \sigma(\mathcal{K}\underline{f}^l + \mathbf{b}^l)$$

The linear map has to be an integral transform with a two-argument kernel (Dunford-Pettis theorem)

$$(\mathcal{H}f)(y) = \int_X \mathbf{k}(y, x) f(x) dx$$

Theorem (G-convs are all you need) Bekkers ICLR 2020, Thm. 1*

Let $\mathcal{H}: \mathbb{L}_2(X) \to \mathbb{L}_2(Y)$ map between signals on homogeneous spaces of G.

Let homogeneous space $Y \equiv G/H$ such that $H = \operatorname{Stab}_G(y_0)$ for some chosen origin $y_0 \in Y$ and let $g_y \in G$ such that $\forall_{y \in Y} : y = g_y y_0$.

Then ${\mathcal H}$ is equivariant to group G if and only if:

1. It is a group convolution:
$$[\mathcal{K}f](y) = \int_X \frac{1}{|g_y|} k(g_y^{-1}x) f(x) dx$$

2. The kernel satisfies a symmetry constraint: $\forall_{h \in H} : \frac{1}{|g_y|} k(hx) = k(x)$

$$\mathcal{K}[f](y) = \int_X \tilde{k}(y, x) f(x) dx$$

$$\mathscr{K}[f](y) = \int_X \tilde{k}(y, x) f(x) dx$$

$$\forall_{g \in G} \text{ and } \forall_{f \in \mathbb{L}_2(X)} \text{:} \qquad (\mathscr{K} \circ \mathscr{L}_g^{G \to \mathbb{L}_2(X)})(f) = (\mathscr{L}_g^{G \to \mathbb{L}_2(Y)} \circ \mathscr{K})(f)$$

$$\mathscr{K}[f](y) = \int_X \tilde{k}(y, x) f(x) dx$$

$$\forall_{g \in G} \text{ and } \forall_{f \in \mathbb{L}_2(X)}$$
:

$$(\mathcal{K} \circ \mathcal{L}_g^{G \to \mathbb{L}_2(X)})(f) = (\mathcal{L}_g^{G \to \mathbb{L}_2(Y)} \circ \mathcal{K})(f)$$

$$\int_X \tilde{k}(y,x) f(g^{-1}x) dx = \int_X \tilde{k}(g^{-1}y,x) f(x) dx$$

First of all, \mathcal{K} is an integral transform:

$$\mathcal{K}[f](y) = \int_X \tilde{k}(y, x) f(x) dx$$

$$\forall_{g \in G} \text{ and } \forall_{f \in \mathbb{L}_2(X)}$$
:

$$(\mathcal{K} \circ \mathcal{L}_g^{G \to \mathbb{L}_2(X)})(f) = (\mathcal{L}_g^{G \to \mathbb{L}_2(Y)} \circ \mathcal{K})(f)$$

$$\int_X \tilde{k}(y, x) f(g^{-1}x) dx = \int_X \tilde{k}(g^{-1}y, x) f(x) dx$$

(in r.h.s. $x \leftarrow g^{-1}x$)

$$\mathscr{K}[f](y) = \int_X \tilde{k}(y, x) f(x) dx$$

$$\forall_{g \in G} \text{ and } \forall_{f \in \mathbb{L}_2(X)}$$
:

$$(\mathcal{K} \circ \mathcal{L}_{g}^{G \to \mathbb{L}_{2}(X)})(f) = (\mathcal{L}_{g}^{G \to \mathbb{L}_{2}(Y)} \circ \mathcal{K})(f)$$

$$\int_X \tilde{k}(y,x)f(g^{-1}x)dx = \int_X \tilde{k}(g^{-1}y,x)f(x)dx$$

(in r.h.s.
$$x \leftarrow g^{-1}x$$
)

$$\int_{X} \tilde{k}(y,x) f(g^{-1}x) dx = \int_{X} \tilde{k}(g^{-1}y, g^{-1}x) f(g^{-1}x) d(g^{-1}x)$$

$$\mathcal{K}[f](y) = \int_X \tilde{k}(y, x) f(x) dx$$

$$\forall_{g \in G} \text{ and } \forall_{f \in \mathbb{L}_2(X)}$$
:

$$(\mathcal{K} \circ \mathcal{L}_{g}^{G \to \mathbb{L}_{2}(X)})(f) = (\mathcal{L}_{g}^{G \to \mathbb{L}_{2}(Y)} \circ \mathcal{K})(f)$$

$$\int_X \tilde{k}(y,x)f(g^{-1}x)dx = \int_X \tilde{k}(g^{-1}y,x)f(x)dx$$

(in r.h.s.
$$x \leftarrow g^{-1}x$$
)

$$\int_{X} \tilde{k}(y,x) f(g^{-1}x) dx = \int_{X} \tilde{k}(g^{-1}y, g^{-1}x) f(g^{-1}x) d(g^{-1}x)$$

$$\int_X \tilde{k}(y,x) f(g^{-1}x) dx = \int_X \tilde{k}(g^{-1}y, g^{-1}x) f(g^{-1}x) \frac{1}{|\det g|} dx.$$

First of all, \mathcal{K} is an integral transform:

$$\mathscr{K}[f](y) = \int_X \tilde{k}(y, x) f(x) dx$$

$$\forall_{g \in G} \text{ and } \forall_{f \in \mathbb{L}_2(X)}$$
:

$$(\mathcal{K} \circ \mathcal{L}_g^{G \to \mathbb{L}_2(X)})(f) = (\mathcal{L}_g^{G \to \mathbb{L}_2(Y)} \circ \mathcal{K})(f)$$

$$\int_X \tilde{k}(y,x)f(g^{-1}x)dx = \int_X \tilde{k}(g^{-1}y,x)f(x)dx$$

(in r.h.s.
$$x \leftarrow g^{-1}x$$
)

$$\int_{X} \tilde{k}(y,x) f(g^{-1}x) dx = \int_{X} \tilde{k}(g^{-1}y, g^{-1}x) f(g^{-1}x) d(g^{-1}x)$$

$$\int_{X} \tilde{k}(y,x) f(g^{-1}x) dx = \int_{X} \tilde{k}(g^{-1}y, g^{-1}x) f(g^{-1}x) \frac{1}{|\det g|} dx.$$

Since this should hold or all $f \in \mathbb{L}_2(X)$ we have

$$\forall_{g \in G}$$

$$\forall g \in G$$
: $\tilde{k}(y, x) = \frac{1}{|\det g|} \tilde{k}(g^{-1}y, g^{-1}x)$

Since G acts transitively on Y we have that $\forall_{y,y_0\in Y}\,\exists_{g_y\in G}$ such that $y=g_yy_0$

Since G acts transitively on Y we have that $\forall_{y,y_0 \in Y} \exists_{g_y \in G}$ such that $y = g_y y_0$

Since G acts transitively on Y we have that $\forall_{y,y_0\in Y}\,\exists_{g_y\in G}$ such that $y=g_yy_0$

Thus $\tilde{k}(y,x) = \tilde{k}(g_y y_0, x)$

Since G acts transitively on Y we have that $\forall_{y,y_0\in Y}\,\exists_{g_y\in G}$ such that $y=g_yy_0$

Thus
$$\tilde{k}(y,x) = \tilde{k}(g_y y_0, x)$$

$$= \frac{1}{|\det g_y|} \tilde{k}(y_0, g_y^{-1} x)$$
 (since $\tilde{k}(y,x) = \frac{1}{|\det g|} \tilde{k}(g^{-1}y, g^{-1}x)$)

Since G acts transitively on Y we have that $\forall_{y,y_0\in Y}\,\exists_{g_y\in G}$ such that $y=g_yy_0$

Thus

$$\begin{split} \tilde{k}(y,x) &= \tilde{k}(g_y \, y_0, x) \\ &= \frac{1}{|\det g_y|} \tilde{k}(y_0, g_y^{-1} \, x) \end{split}$$
 (since $\tilde{k}(y,x) = \frac{1}{|\det g|} \tilde{k}(g^{-1}y, g^{-1}x)$)
$$&= \frac{1}{|\det g_y|} k(g_y^{-1} \, x)$$

Since G acts transitively on Y we have that $\forall_{y,y_0\in Y}\,\exists_{g_y\in G}$ such that $y=g_yy_0$

Thus
$$\tilde{k}(y,x)=\tilde{k}(g_y\,y_0,x)$$
 (since $\tilde{k}(y,x)=\frac{1}{|\det g|}\tilde{k}(g^{-1}y,g^{-1}x)$)

 $= \frac{1}{|\det g_{y}|} \tilde{k}(y_{0}, g_{y}^{-1} x)$

$$= \frac{1}{|\det g_y|} k(g_y^{-1} x)$$

Since G acts transitively on Y we have that $\forall_{y,y_0\in Y}\,\exists_{g_y\in G}$ such that $y=g_yy_0$

Thus
$$\tilde{k}(y,x) = \tilde{k}(g_y y_0, x)$$

$$(\text{since } \tilde{k}(y,x) = \frac{1}{|\det g|} \tilde{k}(g^{-1}y, g^{-1}x))$$

$$= \frac{1}{|\det g_y|} \tilde{k}(y_0, g_y^{-1} x)$$

$$= \frac{1}{|\det g_y|} k(g_y^{-1} x)$$

Since G acts transitively on Y we have that $\forall_{y,y_0\in Y}\,\exists_{g_y\in G}$ such that $y=g_yy_0$

Thus

$$\begin{split} \tilde{k}(y,x) &= \tilde{k}(g_y y_0, x) \\ &= \frac{1}{|\det g_y|} \tilde{k}(y_0, g_y^{-1} x) \end{split}$$
 (since $\tilde{k}(y,x) = \frac{1}{|\det g|} \tilde{k}(g^{-1}y, g^{-1}x)$)
$$&= \frac{1}{|\det g_y|} k(g_y^{-1} x)$$

$$\forall_{h \in H}: \qquad \tilde{k}(h y_0, x) = \tilde{k}(y_0, x)$$

Since G acts transitively on Y we have that $\forall_{y,y_0\in Y}\,\exists_{g_y\in G}$ such that $y=g_yy_0$

Thus

$$\begin{split} \tilde{k}(y,x) &= \tilde{k}(g_y \, y_0, x) \\ &= \frac{1}{|\det g_y|} \tilde{k}(y_0, g_y^{-1} \, x) \end{split}$$
 (since $\tilde{k}(y,x) = \frac{1}{|\det g|} \tilde{k}(g^{-1}y, g^{-1}x)$)
$$&= \frac{1}{|\det g_y|} k(g_y^{-1} \, x)$$

$$\forall_{h \in H}$$
: $\tilde{k}(h y_0, x) = \tilde{k}(y_0, x) \Leftrightarrow k(x) = \frac{1}{|\det h|} k(h^{-1}x)$

Theorem (G-convs are all you need) Bekkers ICLR 2020, Thm. 1*

Let $\mathcal{H}: \mathbb{L}_2(X) \to \mathbb{L}_2(Y)$ map between signals on homogeneous spaces of G.

Let homogeneous space $Y \equiv G/H$ such that $H = \operatorname{Stab}_G(y_0)$ for some chosen origin $y_0 \in Y$ and let $g_y \in G$ such that $\forall_{y \in Y} : y = g_y y_0$.

Then ${\mathcal H}$ is equivariant to group G if and only if:

1. It is a group convolution:
$$[\mathcal{K}f](y) = \int_X \frac{1}{|g_y|} k(g_y^{-1}x) f(x) dx$$

2. The kernel satisfies a symmetry constraint: $\forall_{h \in H} : \frac{1}{|g_y|} k(hx) = k(x)$

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

(X = Y = G/H)Isotropic/Constraint convolutions on spaces of lower dimension than G, $\forall_{h \in H} : k(hx) = k(x)$

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

$$(X = Y = G/H)$$

Isotropic/Constraint convolutions on spaces of lower dimension than G , $\forall_{h \in H} : k(hx) = k(x)$

Example 2D CNN
$$X = \mathbb{R}^2 \equiv SE(2)/SO(2)$$

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

$$(X=Y=G/H) \\ \textbf{Isotropic/Constraint convolutions} \text{ on spaces of lower dimension than } G, \ \forall_{h\in H}: k(hx)=k(x) \\ & = \mathbb{R}^2 \equiv SE(2)/SO(2) \\ & = \mathbb{R}^2$$

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

(X = Y = G/H)Isotropic/Constraint convolutions on spaces of lower dimension than G, $\forall_{h \in H} : k(hx) = k(x)$

Example 2D CNN $X = \mathbb{R}^2 \equiv SE(2)/SO(2)$

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

(X = Y = G/H)Isotropic/Constraint convolutions on spaces of lower Example 2D CNN dimension than G, $\forall_{h \in H} : k(hx) = k(x)$ $X = \mathbb{R}^2 \equiv SE(2)/SO(2)$ Conv2D(input , rotate

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

$$(X=Y=G/H)$$
 Isotropic/Constraint convolutions on spaces of lower dimension than $G,\ \forall_{h\in H}: k(hx)=k(x)$ Example 2D CNN
$$X=\mathbb{R}^2\equiv SE(2)/SO(2)$$
 Conv2D(input ,) rotate

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

$$(X=Y=G/H) \\ \text{Isotropic/Constraint convolutions} \text{ on spaces of lower} \\ \text{dimension than } G, \ \forall_{h\in H}: k(hx)=k(x) \\ X=\mathbb{R}^2\equiv SE(2)/SO(2) \\ \\ Conv2D(\quad \text{input} \quad , \qquad)$$

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

(X = Y = G/H)Isotropic/Constraint convolutions on spaces of lower Example 2D CNN dimension than G, $\forall_{h \in H} \cdot k(hx) = k(x)$ $X = \mathbb{R}^2 \equiv SE(2)/SO(2)$ Conv2D(input , rotate

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

(X = Y = G/H)Isotropic/Constraint convolutions on spaces of lower Example 2D CNN dimension than G, $\forall_{h \in H} \cdot k(hx) = k(x)$ $X = \mathbb{R}^2 \equiv SE(2)/SO(2)$ Conv2D(input , rotate

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

$$(X=Y=G/H) \\ \textbf{Isotropic/Constraint convolutions on spaces of lower} \\ \textbf{dimension than G}, \ \forall_{h\in H}: k(hx)=k(x) \\ \textbf{Example 2D CNN} \\ X=\mathbb{R}^2\equiv SE(2)/SO(2) \\ \textbf{Conv2D(} \quad \textbf{input} \quad , \qquad) \\ \textbf{rotate} \\ \textbf{\Phi} \\ \textbf{Onv2D(} \quad \textbf{input} \quad , \qquad) \\ \textbf{Onv2D(} \quad \textbf{onv2D(} \quad , \qquad) \\ \textbf{Onv2D(} \quad \textbf{onv2D(} \quad , \qquad) \\ \textbf{Onv2D(} \quad \textbf{onv2D(} \quad , \qquad) \\ \textbf{Onv2D(} \quad$$

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

Example 2D CNN $X = \mathbb{R}^2 \equiv SE(2)/SO(2)$

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(\mathbb{R}^2)$$

Example 2D CNN $X = \mathbb{R}^2 \equiv SE(2)/SO(2)$

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(SE(2))$$

$$(X = Y = G/H)$$

$$(X = G/H, Y = G)$$

Lifting convolution. No constraints on k.

Types of layers
$$K: \mathbb{L}_2(\mathbb{R}^2) \to \mathbb{L}_2(SE(2))$$

$$(X = Y = G/H)$$

$$(X = G/H, Y = G)$$

Lifting convolution. No constraints on k.

Types of layers
$$K: \mathbb{L}_2(SE(2)) \to \mathbb{L}_2(SE(2))$$

$$(X = Y = G/H)$$

$$(X = G/H, Y = G)$$

Lifting convolution. No constraints on k.

$$(X = Y = G)$$

Group convolutions. No constraints on k.

Types of layers
$$K: \mathbb{L}_2(SE(2)) \to \mathbb{L}_2(SE(2))$$

$$(X = Y = G/H)$$

$$(X = G/H, Y = G)$$

Lifting convolution. No constraints on k.

$$(X = Y = G)$$

Group convolutions. No constraints on k.

Types of layers $K: \mathbb{L}_2(SE(2)) \to \mathbb{L}_2(\mathbb{R}^2)$

$$(X = Y = G/H)$$

Isotropic/Constraint convolutions on spaces of lower dimension than G, $\forall_{h \in H} : k(hx) = k(x)$

$$(X = G/H, Y = G)$$

Lifting convolution. No constraints on k.

$$(X = Y = G)$$

Group convolutions. No constraints on k.

$$(X = G, Y = G/H)$$

Projection layer. Mean pooling over H.

Types of layers

$$(X = Y = G/H)$$

Isotropic/Constraint convolutions on spaces of lower dimension than G, $\forall_{h \in H} : k(hx) = k(x)$

$$(X = G/H, Y = G)$$

Lifting convolution. No constraints on k.

$$(X = Y = G)$$

Group convolutions. No constraints on k.

$$(X = G, Y = G/H)$$

Projection layer. Mean pooling over H.

The most expressive group equivariant architectures are obtained by lifting the feature maps to the group

General group equivariant architecture

"normal" (0)
vs
"mitotic" (1)

Conclusion

If you want to build equivariant neural networks

Conclusion

If you want to build equivariant neural networks

Group convolutions are all you need!