
Group Equivariant Deep Learning
Lecture 1 - Regular group convolutions 
 Lecture 1.7 - Group convolutions are all you need! 

 Equivariant linear layers between feature maps are group convolutions

Erik Bekkers, Amsterdam Machine Learning Lab, University of Amsterdam 
This mini-course serves as a module with the UvA Master AI course Deep Learning 2 https://uvadl2c.github.io/

https://uvadl2c.github.io/

Classical artificial neural networks

2

x0 ∈ 𝒳 = ?What’s my input?

x0 ∈ 𝒳 = 𝕃2(ℝ2)Image analyst:

x0 ∈ 𝒳 = ℝ784Naive deep learner:

Classical artificial neural networks

2

x0 ∈ 𝒳 = ?What’s my input?

x0 ∈ 𝒳 = 𝕃2(ℝ2)Image analyst:

x0 ∈ 𝒳 = ℝ784Naive deep learner:

input vector
x0

x1
x2 xL−1 y

0

1

2

3

4

5

6

7

8

9

output probability vector 
(e.g. through soft max)

Classical artificial neural networks

2

x0 ∈ 𝒳 = ?What’s my input?

x0 ∈ 𝒳 = 𝕃2(ℝ2)Image analyst:

x0 ∈ 𝒳 = ℝ784Naive deep learner:

input vector
x0

x1
x2 xL−1 y

0

1

2

3

4

5

6

7

8

9

output probability vector 
(e.g. through soft max)

Iteratively transform the vector via

xl = φ(Kwl
xl−1 + bl)

Linear map: matrix-vector multiplication with Kwl
∈ ℝNl×Nl−1

A fully connect layer as convolution on 1D signal

3

y1
y2
y3
⋮

= φ

w11 w12 w13 w14 w15 …
w21 w22 w23 w24 w25 …
w31 w32 w33 w34 w35 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

x1
x2
x3
x4
x5
⋮

+

b1

b2

b3
⋮

y = φ(Kw x + b)

- Way too many degrees of freedom!

- Doest not leverage/preserve structure in data

A fully connected layer as convolution on 1D signal

4

y1
y2
y3
⋮

= φ

w1 w2 w3 0 0 …
0 w1 w2 w3 0 …
0 0 w1 w2 w3 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

x1
x2
x3
x4
x5
⋮

+

b1

b2

b3
⋮

y = φ(Kw x + b)

Convolution as linear operator
+ Localized transformations

+ Shift equivariance

+ Sparsification of the linear operator

+ Weightsharing

w

x

y
Kw

A fully connected layer as convolution on 1D signal

4

y1
y2
y3
⋮

= φ

w1 w2 w3 0 0 …
0 w1 w2 w3 0 …
0 0 w1 w2 w3 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

x1
x2
x3
x4
x5
⋮

+

b1

b2

b3
⋮

y = φ(Kw x + b)

Convolution as linear operator
+ Localized transformations

+ Shift equivariance

+ Sparsification of the linear operator

+ Weightsharing

w

x

y
Kw

5

Iteratively transform the vector in viaℝNx

y = φ(K x + bl)

Linear map: matrix-vector multiplication with
K ∈ ℝNy×Nx

yj = ∑
i

Ki,j xi

mitotic  
figure

Iteratively transform the feature map in 𝕃2(X)

f out = φ(K f in + bl)

Linear map: kernel operator with kernel in
𝕃1(Y, X)

(Kf)(y) = ∫X
k(y, x)f(x)dx

Working with vectors x ∈ 𝒳 = ℝNx
Working with feature maps f ∈ 𝒳 = 𝕃2(X)

Classical artificial NNs in the continuous world

5

Iteratively transform the vector in viaℝNx

y = φ(K x + bl)

Linear map: matrix-vector multiplication with
K ∈ ℝNy×Nx

yj = ∑
i

Ki,j xi

mitotic  
figure

Iteratively transform the feature map in 𝕃2(X)

f out = φ(K f in + bl)

Linear map: kernel operator with kernel in
𝕃1(Y, X)

(Kf)(y) = ∫X
k(y, x)f(x)dx

Working with vectors x ∈ 𝒳 = ℝNx
Working with feature maps f ∈ 𝒳 = 𝕃2(X)

Classical artificial NNs in the continuous world

5

Iteratively transform the vector in viaℝNx

y = φ(K x + bl)

Linear map: matrix-vector multiplication with
K ∈ ℝNy×Nx

yj = ∑
i

Ki,j xi

mitotic  
figure

Iteratively transform the feature map in 𝕃2(X)

f out = φ(K f in + bl)

Linear map: kernel operator with kernel in
𝕃1(Y, X)

(Kf)(y) = ∫X
k(y, x)f(x)dx

Working with vectors x ∈ 𝒳 = ℝNx
Working with feature maps f ∈ 𝒳 = 𝕃2(X)

We want to be equivariant!K

Classical artificial NNs in the continuous world

Neural Networks for Signal Data

6

mitotic  
figure

Let’s build neural networks for signal
data via the layers of the form:

f l+1 = σ(𝓚 f l + bl)

𝓚 : 𝕃2(X)Nl → 𝕃2(Y)Nl+1

The linear map has to be an integral
transform with a two-argument kernel
(Dunford-Pettis theorem)

(𝓚f)(y) = ∫X
k(y, x)f(x)dx

Theorem (G-convs are all you need)

7

Let map between signals on homogeneous spaces of .

Let homogeneous space such that for some chosen origin
 and let such that .

Then is equivariant to group if and only if:

 1. It is a group convolution:

 2. The kernel satisfies a symmetry constraint:

𝒦 : 𝕃2(X) → 𝕃2(Y) G

Y ≡ G/H H = StabG(y0)
y0 ∈ Y gy ∈ G ∀y∈Y : y = gyy0

𝒦 G

[𝒦f](y) = ∫X

1
|gy |

k(g−1
y x)f(x)dx

∀h∈H : 1
|gy |

k(hx) = k(x)

*Work with Remco Duits at TU/e. See also: Duits 2005 – Thm 25, Cohen, Geiger, Weiler 2018 - Thm 6.1, Kondor, Trivedi 2018 - Thm 1

Bekkers ICLR 2020, Thm. 1*

Proof (G-convs are all you need)

8

First of all, is an integral transform:𝒦 𝒦[f](y) = ∫X
k̃(y, x)f(x)dx

Proof (G-convs are all you need)

8

(𝒦 ∘ ℒG→𝕃2(X)
g)(f) = (ℒG→𝕃2(Y)

g ∘ 𝒦)(f) and :∀g∈G ∀f∈𝕃2(X)

First of all, is an integral transform:𝒦 𝒦[f](y) = ∫X
k̃(y, x)f(x)dx

Proof (G-convs are all you need)

8

(𝒦 ∘ ℒG→𝕃2(X)
g)(f) = (ℒG→𝕃2(Y)

g ∘ 𝒦)(f)

∫X
k̃(y, x)f(g−1x)dx = ∫X

k̃(g−1y, x)f(x)dx

 and :∀g∈G ∀f∈𝕃2(X)

First of all, is an integral transform:𝒦 𝒦[f](y) = ∫X
k̃(y, x)f(x)dx

Proof (G-convs are all you need)

8

(𝒦 ∘ ℒG→𝕃2(X)
g)(f) = (ℒG→𝕃2(Y)

g ∘ 𝒦)(f)

∫X
k̃(y, x)f(g−1x)dx = ∫X

k̃(g−1y, x)f(x)dx
(in r.h.s.)x ← g−1x

 and :∀g∈G ∀f∈𝕃2(X)

First of all, is an integral transform:𝒦 𝒦[f](y) = ∫X
k̃(y, x)f(x)dx

Proof (G-convs are all you need)

8

(𝒦 ∘ ℒG→𝕃2(X)
g)(f) = (ℒG→𝕃2(Y)

g ∘ 𝒦)(f)

∫X
k̃(y, x)f(g−1x)dx = ∫X

k̃(g−1y, x)f(x)dx

∫X
k̃(y, x)f(g−1x)dx = ∫X

k̃(g−1y, g−1x)f(g−1x)d(g−1x)

(in r.h.s.)x ← g−1x

 and :∀g∈G ∀f∈𝕃2(X)

First of all, is an integral transform:𝒦 𝒦[f](y) = ∫X
k̃(y, x)f(x)dx

Proof (G-convs are all you need)

8

(𝒦 ∘ ℒG→𝕃2(X)
g)(f) = (ℒG→𝕃2(Y)

g ∘ 𝒦)(f)

∫X
k̃(y, x)f(g−1x)dx = ∫X

k̃(g−1y, x)f(x)dx

∫X
k̃(y, x)f(g−1x)dx = ∫X

k̃(g−1y, g−1x)f(g−1x)d(g−1x)

∫X
k̃(y, x)f(g−1x)dx = ∫X

k̃(g−1y, g−1x)f(g−1x) 1
|det g |

dx .

(in r.h.s.)x ← g−1x

 and :∀g∈G ∀f∈𝕃2(X)

First of all, is an integral transform:𝒦 𝒦[f](y) = ∫X
k̃(y, x)f(x)dx

Proof (G-convs are all you need)

8

(𝒦 ∘ ℒG→𝕃2(X)
g)(f) = (ℒG→𝕃2(Y)

g ∘ 𝒦)(f)

∫X
k̃(y, x)f(g−1x)dx = ∫X

k̃(g−1y, x)f(x)dx

∫X
k̃(y, x)f(g−1x)dx = ∫X

k̃(g−1y, g−1x)f(g−1x)d(g−1x)

∫X
k̃(y, x)f(g−1x)dx = ∫X

k̃(g−1y, g−1x)f(g−1x) 1
|det g |

dx .

(in r.h.s.)x ← g−1x

 and :∀g∈G ∀f∈𝕃2(X)

Since this should hold or all we have f ∈ 𝕃2(X) k̃(y, x) = 1
|det g |

k̃(g−1y, g−1x):∀g∈G

First of all, is an integral transform:𝒦 𝒦[f](y) = ∫X
k̃(y, x)f(x)dx

Proof (G-convs are all you need)

9

Since acts transitively on we have that such that G Y ∀y,y0∈Y ∃gy∈G y = gyy0

|

y0

y

||

Proof (G-convs are all you need)

9

Since acts transitively on we have that such that G Y ∀y,y0∈Y ∃gy∈G y = gyy0

|

y0

ygy ⋅ |

|

Proof (G-convs are all you need)

9

Since acts transitively on we have that such that G Y ∀y,y0∈Y ∃gy∈G y = gyy0

|

y0

ygy ⋅

Thus k̃(y, x) = k̃(gy y0, x)
|

|

Proof (G-convs are all you need)

9

Since acts transitively on we have that such that G Y ∀y,y0∈Y ∃gy∈G y = gyy0

|

y0

ygy ⋅

Thus k̃(y, x) = k̃(gy y0, x)

= 1
|det gy |

k̃(y0, g−1
y x)

|

|

(since)k̃(y, x) = 1
|det g |

k̃(g−1y, g−1x)

Proof (G-convs are all you need)

9

Since acts transitively on we have that such that G Y ∀y,y0∈Y ∃gy∈G y = gyy0

|

y0

ygy ⋅

Thus k̃(y, x) = k̃(gy y0, x)

= 1
|det gy |

k̃(y0, g−1
y x)

= 1
|det gy |

k(g−1
y x)

|

|

(since)k̃(y, x) = 1
|det g |

k̃(g−1y, g−1x)

Proof (G-convs are all you need)

9

Since acts transitively on we have that such that G Y ∀y,y0∈Y ∃gy∈G y = gyy0

|

y0

ygy ⋅

Thus k̃(y, x) = k̃(gy y0, x)

= 1
|det gy |

k̃(y0, g−1
y x)

= 1
|det gy |

k(g−1
y x)

If then there could be a whole subgroup that leaves invariantY ≡ G/H H = StabG y0 y0

|

|

(since)k̃(y, x) = 1
|det g |

k̃(g−1y, g−1x)

Proof (G-convs are all you need)

9

Since acts transitively on we have that such that G Y ∀y,y0∈Y ∃gy∈G y = gyy0

|

y0

ygy ⋅

Thus k̃(y, x) = k̃(gy y0, x)

= 1
|det gy |

k̃(y0, g−1
y x)

= 1
|det gy |

k(g−1
y x)

If then there could be a whole subgroup that leaves invariantY ≡ G/H H = StabG y0 y0

h ⋅

|

|

(since)k̃(y, x) = 1
|det g |

k̃(g−1y, g−1x)

Proof (G-convs are all you need)

9

Since acts transitively on we have that such that G Y ∀y,y0∈Y ∃gy∈G y = gyy0

|

y0

ygy ⋅

Thus k̃(y, x) = k̃(gy y0, x)

= 1
|det gy |

k̃(y0, g−1
y x)

= 1
|det gy |

k(g−1
y x)

If then there could be a whole subgroup that leaves invariantY ≡ G/H H = StabG y0 y0

k̃(h y0, x) = k̃(y0, x)∀h∈H :

h ⋅
(gy ⋅ h) ⋅

||
(since)k̃(y, x) = 1

|det g |
k̃(g−1y, g−1x)

Proof (G-convs are all you need)

9

Since acts transitively on we have that such that G Y ∀y,y0∈Y ∃gy∈G y = gyy0

|

y0

ygy ⋅

Thus k̃(y, x) = k̃(gy y0, x)

= 1
|det gy |

k̃(y0, g−1
y x)

= 1
|det gy |

k(g−1
y x)

If then there could be a whole subgroup that leaves invariantY ≡ G/H H = StabG y0 y0

k(x) =
1

| det h |
k(h−1x)k̃(h y0, x) = k̃(y0, x)∀h∈H : ⇔

h ⋅
(gy ⋅ h) ⋅

||
(since)k̃(y, x) = 1

|det g |
k̃(g−1y, g−1x)

Theorem (G-convs are all you need)

10

Let map between signals on homogeneous spaces of .

Let homogeneous space such that for some chosen origin
 and let such that .

Then is equivariant to group if and only if:

 1. It is a group convolution:

 2. The kernel satisfies a symmetry constraint:

𝒦 : 𝕃2(X) → 𝕃2(Y) G

Y ≡ G/H H = StabG(y0)
y0 ∈ Y gy ∈ G ∀y∈Y : y = gyy0

𝒦 G

[𝒦f](y) = ∫X

1
|gy |

k(g−1
y x)f(x)dx

∀h∈H : 1
|gy |

k(hx) = k(x)

*Work with Remco Duits at TU/e. See also: Duits 2005 – Thm 25, Cohen, Geiger, Weiler 2018 - Thm 6.1, Kondor, Trivedi 2018 - Thm 1

Bekkers ICLR 2020, Thm. 1*

11

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

11

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Example 2D CNN

X = ℝ2 ≡ SE(2)/SO(2)

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

11

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Φ

Example 2D CNN

X = ℝ2 ≡ SE(2)/SO(2)

 input Conv2D(,)

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

11

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Φ

rotate

Example 2D CNN

X = ℝ2 ≡ SE(2)/SO(2)

 input Conv2D(,)

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

11

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Φ

Φ

rotate

Example 2D CNN

X = ℝ2 ≡ SE(2)/SO(2)

 input Conv2D(,)

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

11

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Φ

Φ

rotate rotate

Example 2D CNN

X = ℝ2 ≡ SE(2)/SO(2)

 input Conv2D(,)

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

12

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Example 2D CNN

X = ℝ2 ≡ SE(2)/SO(2)

Φ

 input Conv2D(,)

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

12

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Example 2D CNN

X = ℝ2 ≡ SE(2)/SO(2)

Φ

rotate input Conv2D(,)

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

12

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Example 2D CNN

X = ℝ2 ≡ SE(2)/SO(2)

Φ

Φ

rotate input Conv2D(,)

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

12

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Example 2D CNN

X = ℝ2 ≡ SE(2)/SO(2)

Φ

Φ

rotate rotate input Conv2D(,)

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

12

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Example 2D CNN

X = ℝ2 ≡ SE(2)/SO(2)

Φ

Φ

rotate rotate input Conv2D(,)

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

12

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Example 2D CNN

X = ℝ2 ≡ SE(2)/SO(2)

Φ

Φ

rotate rotate input Conv2D(,)

Types of layers K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Types of layers K : 𝕃2(ℝ2) → 𝕃2(SE(2))

13

planar rotation

periodic shift

planar rotation

Φ

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆̃ f)(x) = (ℒR2→𝕃2(ℝ2)
x ℒSO(2)→𝕃2(ℝ2)

θ k , f)𝕃2(ℝ2)

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Types of layers K : 𝕃2(ℝ2) → 𝕃2(SE(2))

13

planar rotation

periodic shift

planar rotation

Φ

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆̃ f)(x) = (ℒR2→𝕃2(ℝ2)
x ℒSO(2)→𝕃2(ℝ2)

θ k , f)𝕃2(ℝ2)

14

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Φ

Φ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆ f)(x) = (ℒℝ2→𝕃2(SE(2))
x ℒSO(2)→𝕃2(SE(2))

θ k , f)𝕃2(SE(2))

ℒSO(2)→𝕃2(SE(2))
θ

Types of layers K : 𝕃2(SE(2)) → 𝕃2(SE(2))

14

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Φ

Φ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆ f)(x) = (ℒℝ2→𝕃2(SE(2))
x ℒSO(2)→𝕃2(SE(2))

θ k , f)𝕃2(SE(2))

ℒSO(2)→𝕃2(SE(2))
θ

Types of layers K : 𝕃2(SE(2)) → 𝕃2(SE(2))

15

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Types of layers K : 𝕃2(SE(2)) → 𝕃2(ℝ2)

16

()  
 Isotropic/Constraint convolutions on spaces of lower  
 dimension than ,

()  
 Lifting convolution. No constraints on .

()  
 Group convolutions. No constraints on .

  
 Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Types of layers .

The most expressive group equivariant

architectures are obtained by lifting

the feature maps to the group

17

General group equivariant architecture

18

Class probability

Lif
tin

g c
on

v

G-
co

nv

G-
co

nv

G-
co

nv

Pr
oj

ec
tio

n
lay

er

Fu
lly

 co
nn

ec
te

d
ou

tp
ut

 la
ye

r

Input image

 “normal” (0) 
vs 

 “mitotic” (1)

Rotation + translation equivariant

Max-pooling over rotations
guarantees rotation invariance

Conclusion

19

If you want to build equivariant neural networks

Conclusion

19

If you want to build equivariant neural networks

Group convolutions are all you need!

