
Group Equivariant Deep Learning
Lecture 1 - Regular group convolutions 
     Lecture 1.7 - Group convolutions are all you need! 

      Equivariant linear layers between feature maps are group convolutions

Erik Bekkers, Amsterdam Machine Learning Lab, University of Amsterdam 
This mini-course serves as a module with the UvA Master AI course Deep Learning 2 https://uvadl2c.github.io/ 

https://uvadl2c.github.io/
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Iteratively transform the vector via

xl = φ(Kwl
xl−1 + bl)

Linear map: matrix-vector multiplication with Kwl
∈ ℝNl×Nl−1



A fully connect layer as convolution on 1D signal
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y = φ( Kw x + b )

- Way too many degrees of freedom!

- Doest not leverage/preserve structure in data
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Iteratively transform the vector in  viaℝNx

y = φ(K x + bl)

Linear map: matrix-vector multiplication with 
K ∈ ℝNy×Nx

yj = ∑
i

Ki,j xi

mitotic  
figure

Iteratively transform the feature map in 𝕃2(X)

f out = φ(K f in + bl)

Linear map: kernel operator with kernel in  
𝕃1(Y, X)

(Kf )(y) = ∫X
k(y, x)f(x)dx

Working with vectors x ∈ 𝒳 = ℝNx
Working with feature maps f ∈ 𝒳 = 𝕃2(X)

Classical artificial NNs in the continuous world
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(Kf )(y) = ∫X
k(y, x)f(x)dx

Working with vectors x ∈ 𝒳 = ℝNx
Working with feature maps f ∈ 𝒳 = 𝕃2(X)

We want  to be equivariant!K

Classical artificial NNs in the continuous world



Neural Networks for Signal Data
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mitotic  
figure

Let’s build neural networks for signal 
data via the layers of the form:

f l+1 = σ(𝓚 f l + bl)

𝓚 : 𝕃2(X)Nl → 𝕃2(Y)Nl+1

The linear map has to be an integral 
transform with a two-argument kernel 
(Dunford-Pettis theorem)

(𝓚f )(y) = ∫X
k(y, x)f(x)dx



Theorem (G-convs are all you need)
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Let  map between signals on homogeneous spaces of . 


Let homogeneous space  such that  for some chosen origin 
 and let  such that .


Then  is equivariant to group  if and only if: 


             1. It is a group convolution:  


             2. The kernel satisfies a symmetry constraint:     

𝒦 : 𝕃2(X) → 𝕃2(Y) G

Y ≡ G/H H = StabG(y0)
y0 ∈ Y gy ∈ G ∀y∈Y : y = gyy0

𝒦 G

[𝒦f ](y) = ∫X

1
|gy |

k(g−1
y x)f(x)dx

∀h∈H : 1
|gy |

k(hx) = k(x)

*Work with Remco Duits at TU/e.                      See also: Duits 2005 – Thm 25, Cohen, Geiger, Weiler 2018 - Thm 6.1, Kondor, Trivedi 2018 - Thm 1

Bekkers ICLR 2020, Thm. 1*
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First of all,  is an integral transform:𝒦 𝒦[ f ](y) = ∫X
k̃(y, x)f(x)dx
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y
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( )  
    Isotropic/Constraint convolutions on spaces of lower     
    dimension than , 


( )  
    Lifting convolution. No constraints on .


( )  
    Group convolutions. No constraints on .


  
    Projection layer. Mean pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

Types of layers      K : 𝕃2(ℝ2) → 𝕃2(ℝ2)
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The most expressive group equivariant 

architectures are obtained by lifting 


the feature maps to the group
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General group equivariant architecture
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guarantees rotation invariance
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If you want to build equivariant neural networks


Group convolutions are all you need!


