

Group Equivariant Deep Learning Lecture 1 - Regular group convolutions Lecture 1.6 - Group Theory Homogeneous/quotient spaces Preliminaries for "group convolutions are all you need"

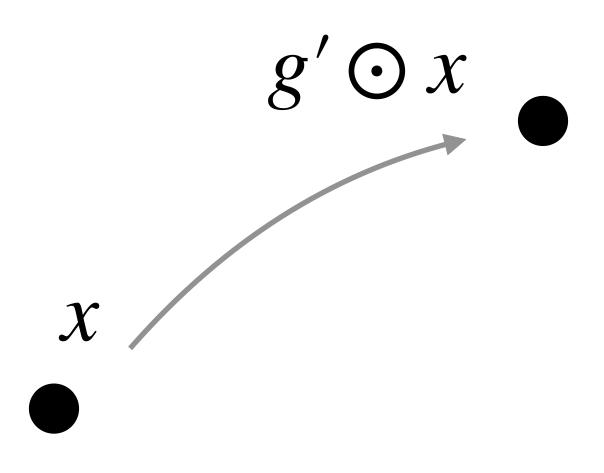
Transitive action, homogeneous space, quotient space, examples

Erik Bekkers, Amsterdam Machine Learning Lab, University of Amsterdam This mini-course serves as a module with the UvA Master AI course Deep Learning 2 https://uvadl2c.github.io/

Group action

Group action: An operator \odot : $G \times X \rightarrow X$ such that

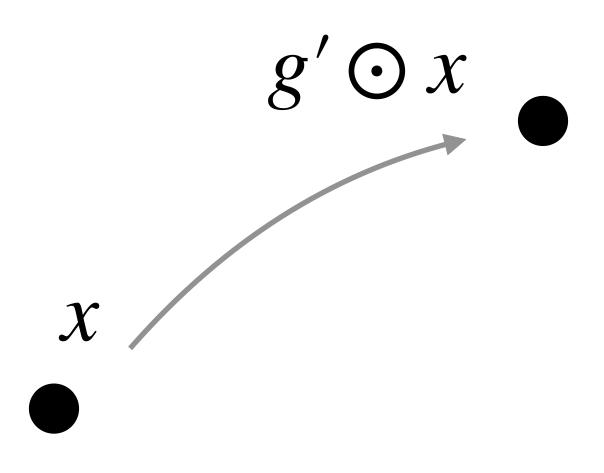
 $\forall_{g,g'\in G, x\in X}: g \odot (g' \odot x) = (gg') \odot x$

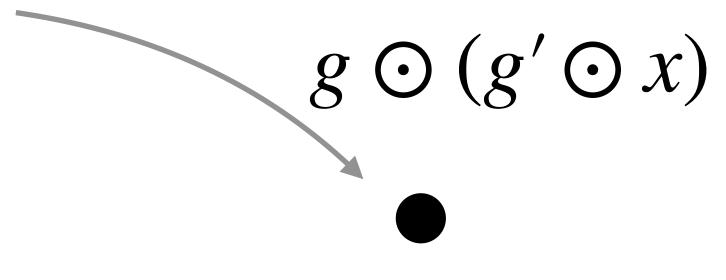


Group action

Group action: An operator \odot : $G \times X \rightarrow X$ such that

 $\forall_{g,g'\in G, x\in X}: g \odot (g' \odot x) = (gg') \odot x$

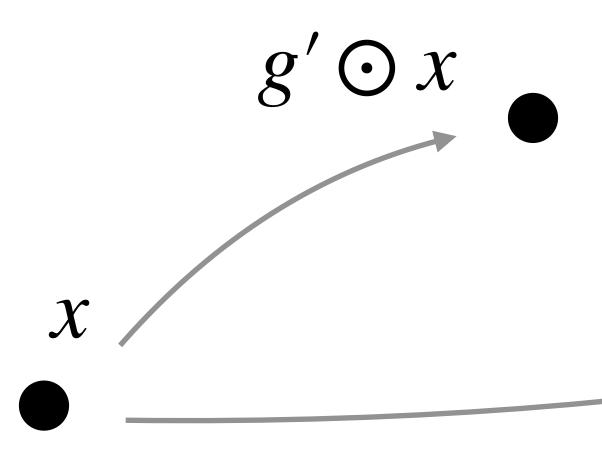


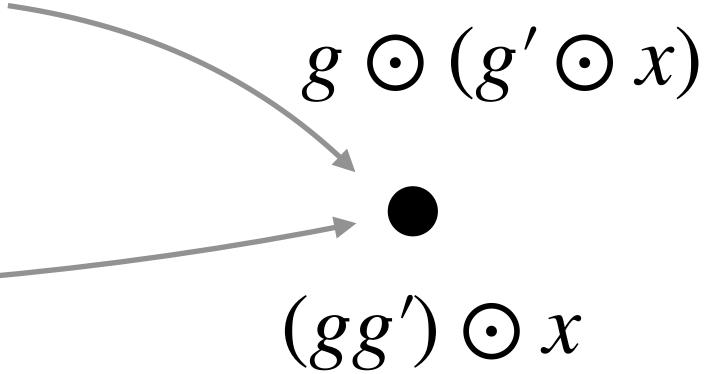


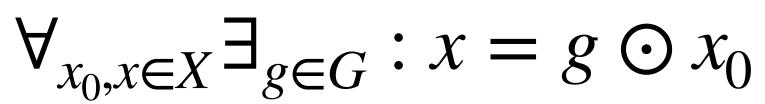
Group action

Group action: An operator \odot : $G \times X \rightarrow X$ such that

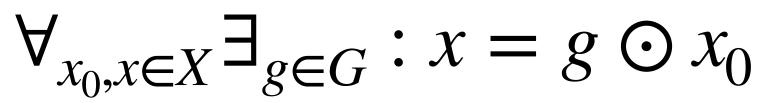
 $\forall_{g,g'\in G, x\in X}: g \odot (g' \odot x) = (gg') \odot x$







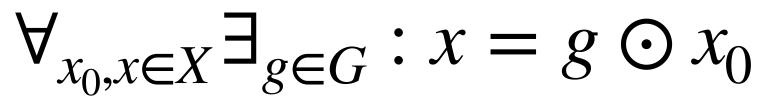
- **Transitive action**: An action \odot : $G \times X \rightarrow X$ such that



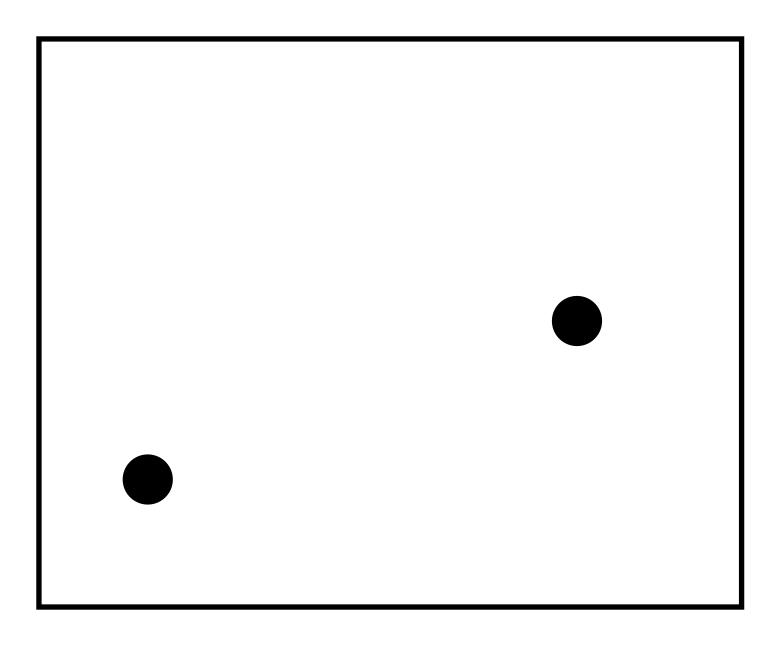
$(\mathbb{R}^2, +)$ acts transitively on \mathbb{R}^2



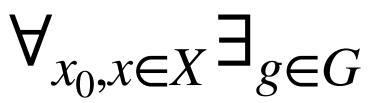
- **Transitive action**: An action \odot : $G \times X \rightarrow X$ such that

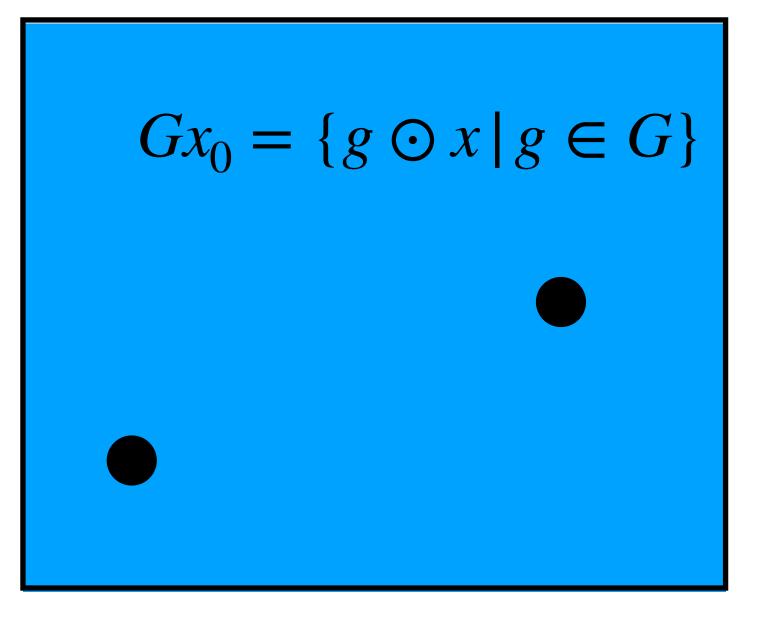


$(\mathbb{R}^2, +)$ acts transitively on \mathbb{R}^2

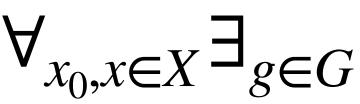


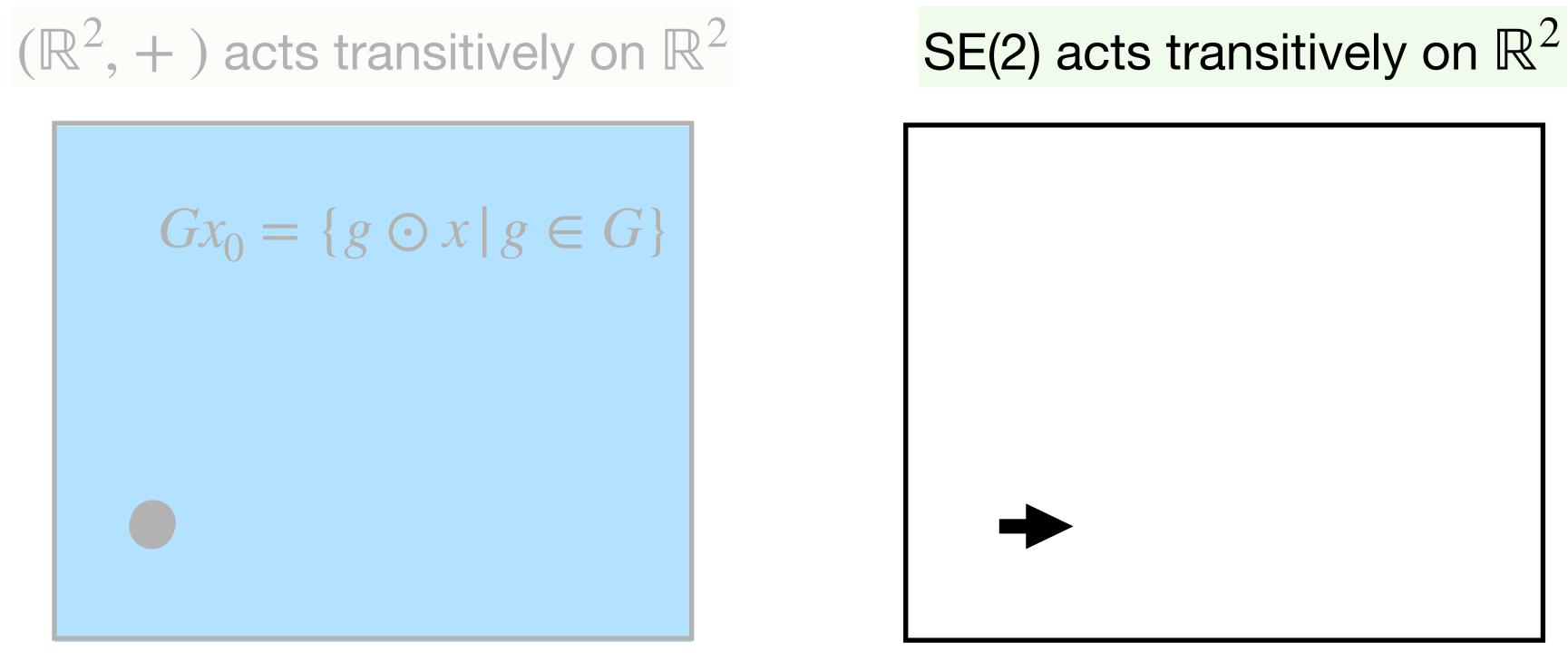
- **Transitive action**: An action \odot : $G \times X \rightarrow X$ such that



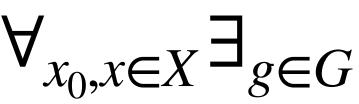


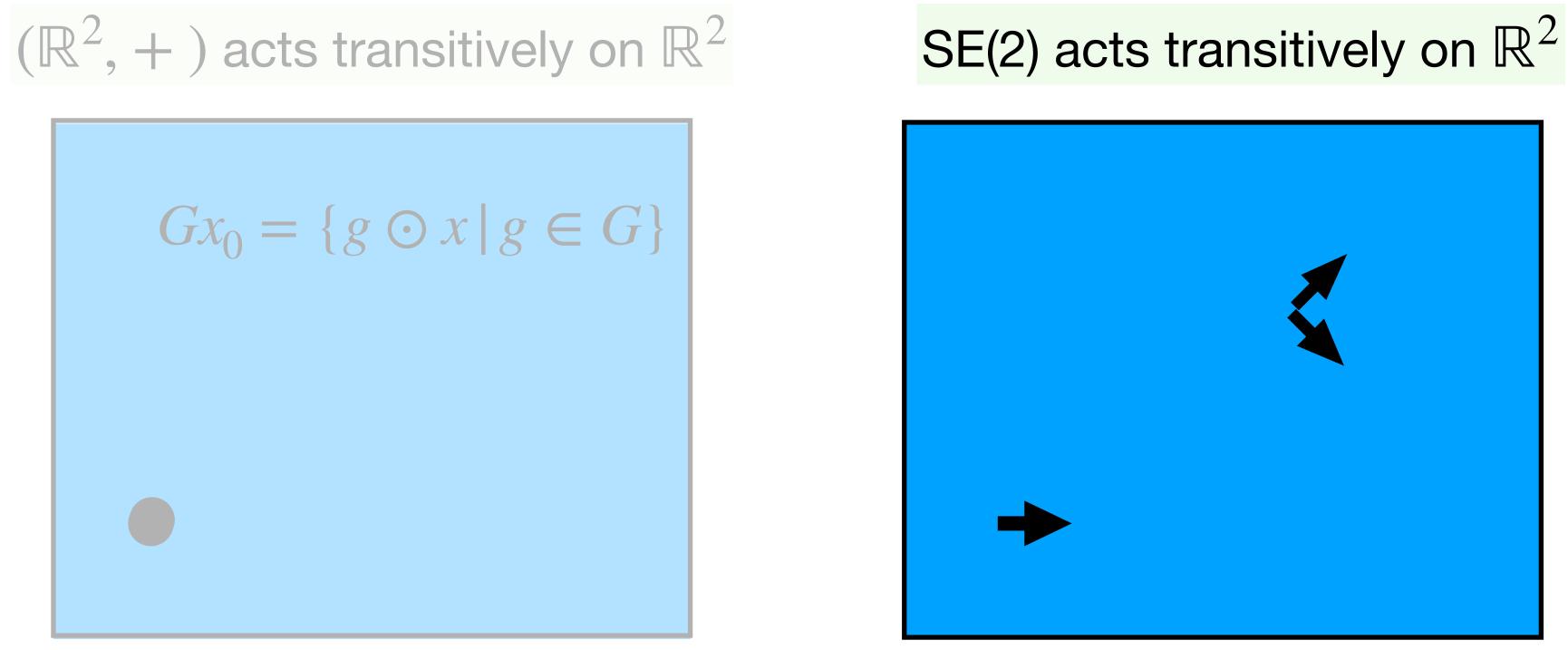
- **Transitive action**: An action \odot : $G \times X \rightarrow X$ such that
 - $\forall_{x_0, x \in X} \exists_{g \in G} : x = g \odot x_0$



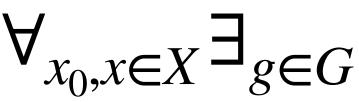


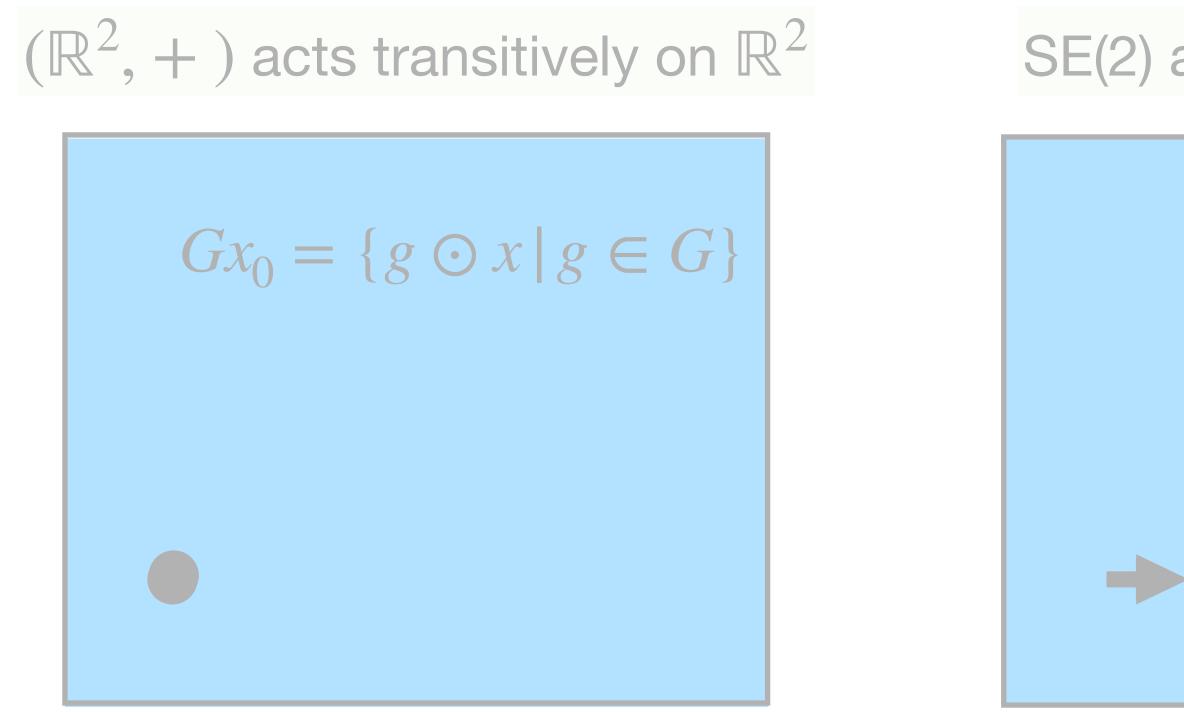
- **Transitive action**: An action \odot : $G \times X \rightarrow X$ such that
 - $\forall_{x_0, x \in X} \exists_{g \in G} : x = g \odot x_0$





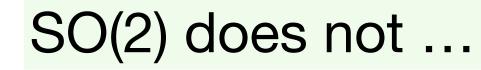
- **Transitive action**: An action \odot : $G \times X \rightarrow X$ such that
 - $\forall_{x_0, x \in X} \exists_{g \in G} : x = g \odot x_0$

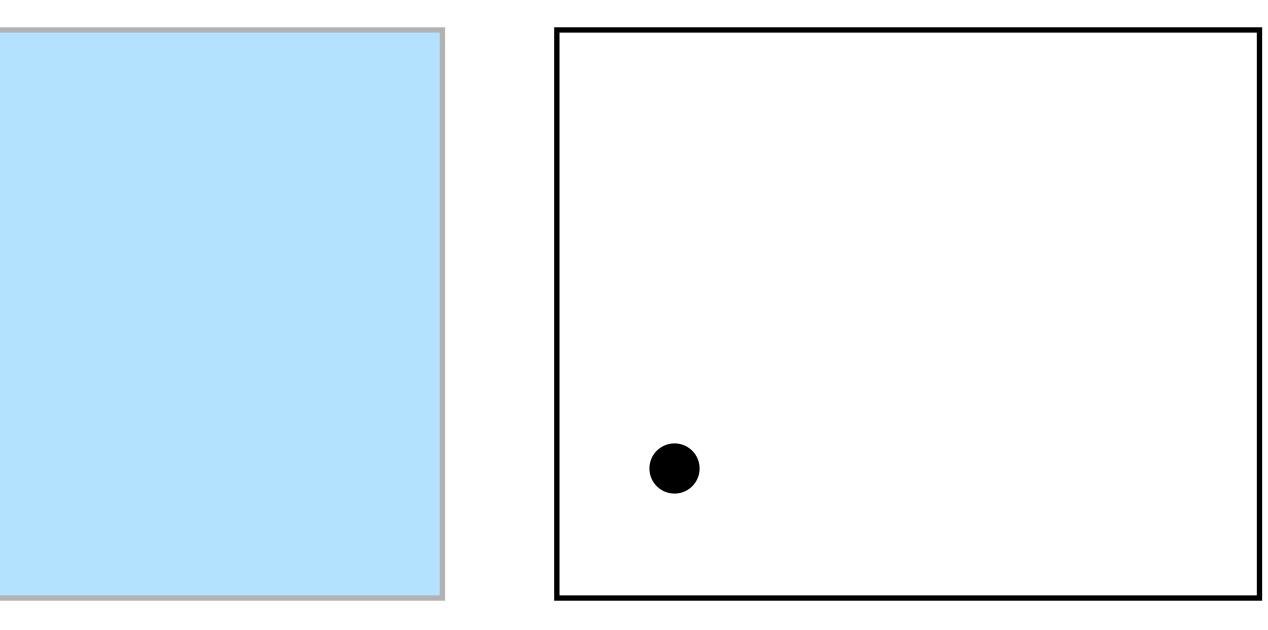


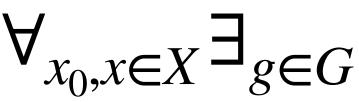


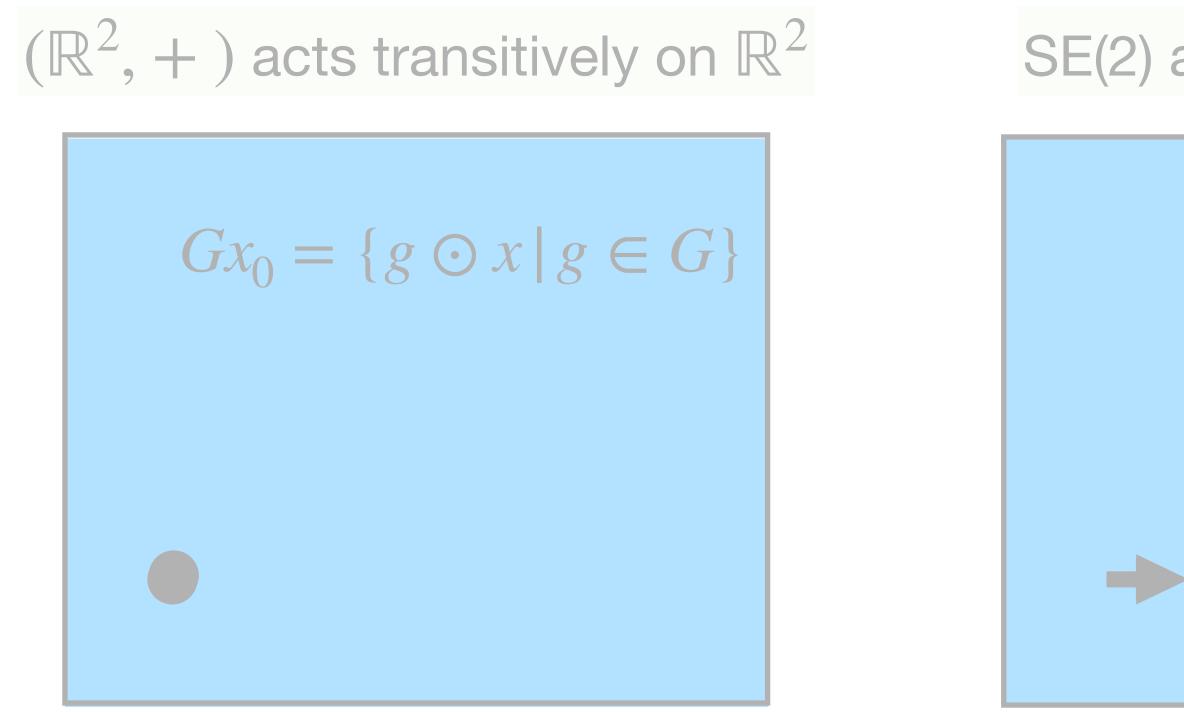
- **Transitive action**: An action \odot : $G \times X \rightarrow X$ such that
 - $\forall_{x_0, x \in X} \exists_{g \in G} : x = g \odot x_0$

SE(2) acts transitively on \mathbb{R}^2



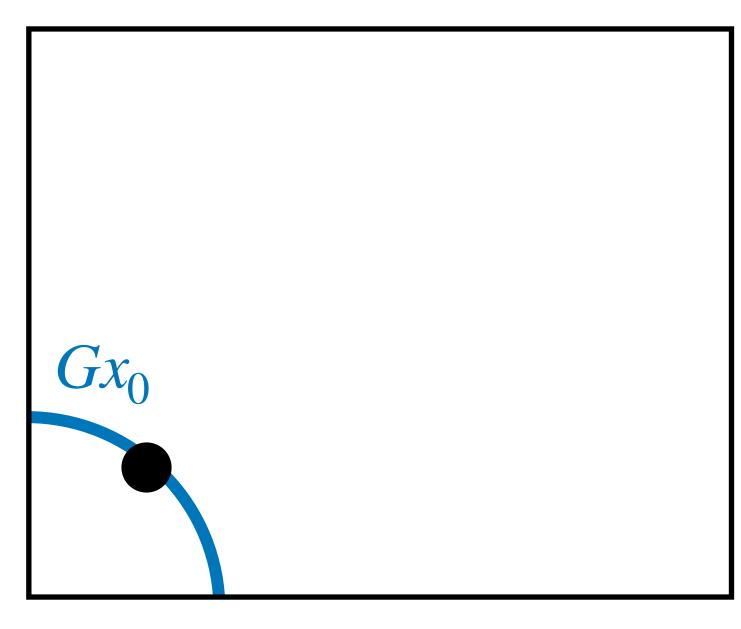


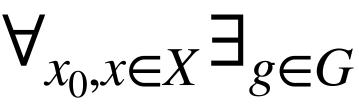


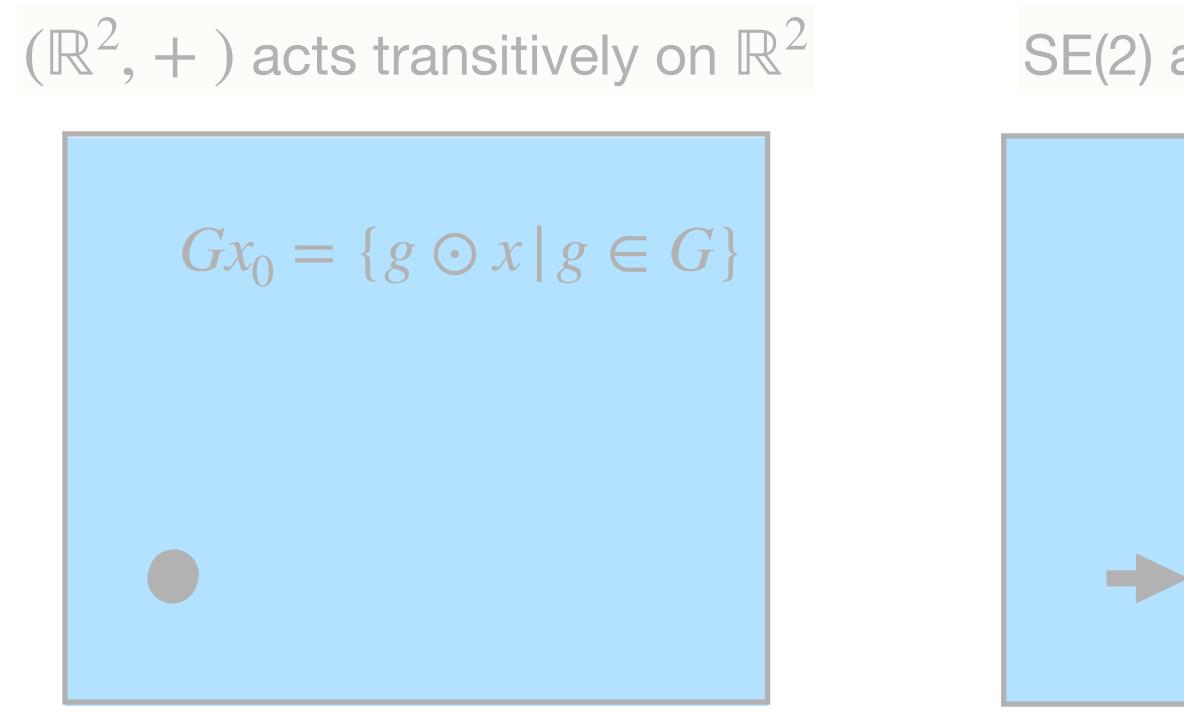


- **Transitive action**: An action \odot : $G \times X \rightarrow X$ such that
 - $\forall_{x_0, x \in X} \exists_{g \in G} : x = g \odot x_0$

SE(2) acts transitively on \mathbb{R}^2



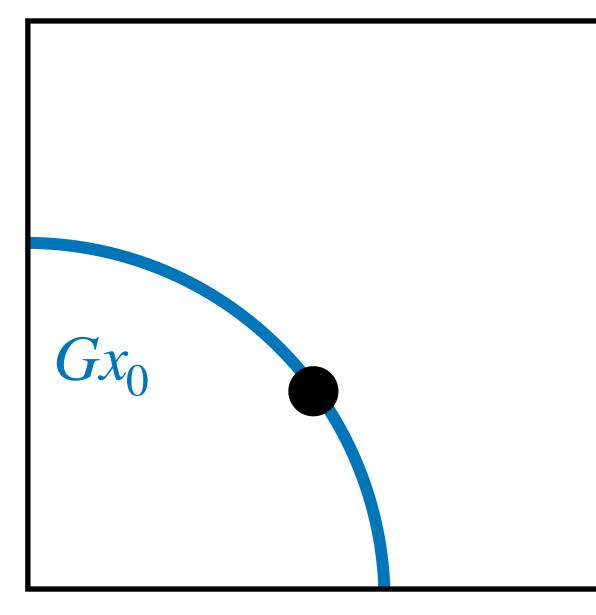


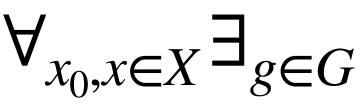


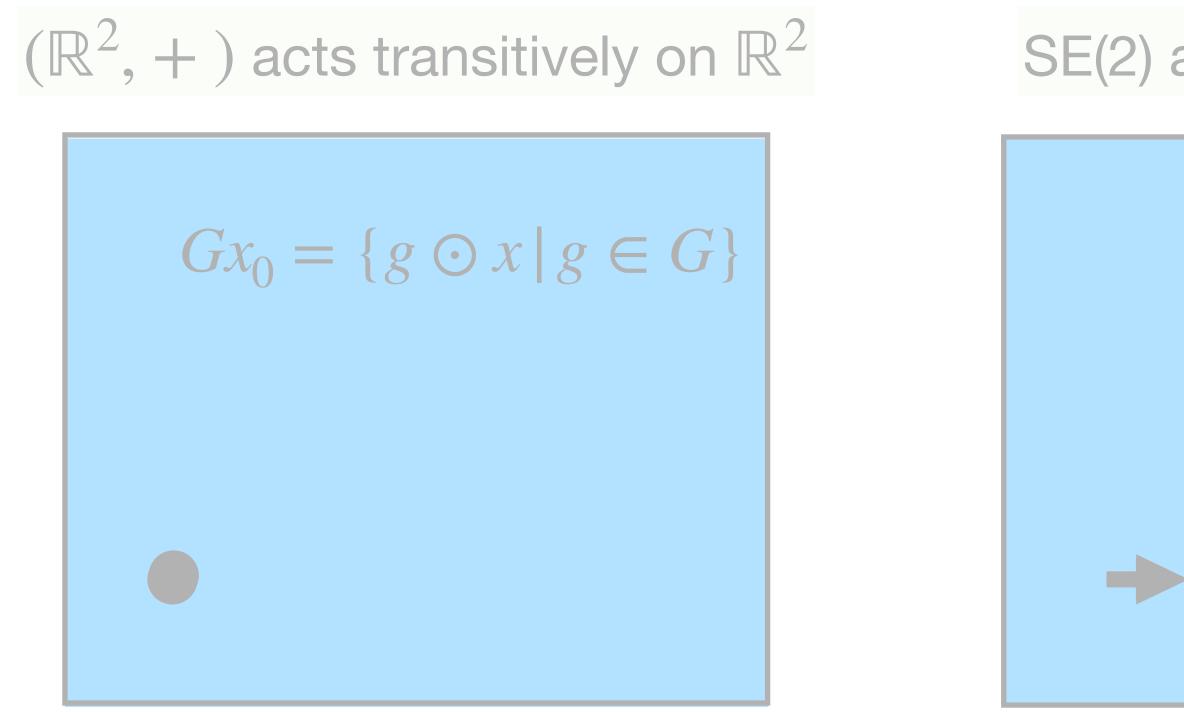
- **Transitive action**: An action \odot : $G \times X \rightarrow X$ such that
 - $\forall_{x_0, x \in X} \exists_{g \in G} : x = g \odot x_0$

SE(2) acts transitively on \mathbb{R}^2

SO(2) does not ...



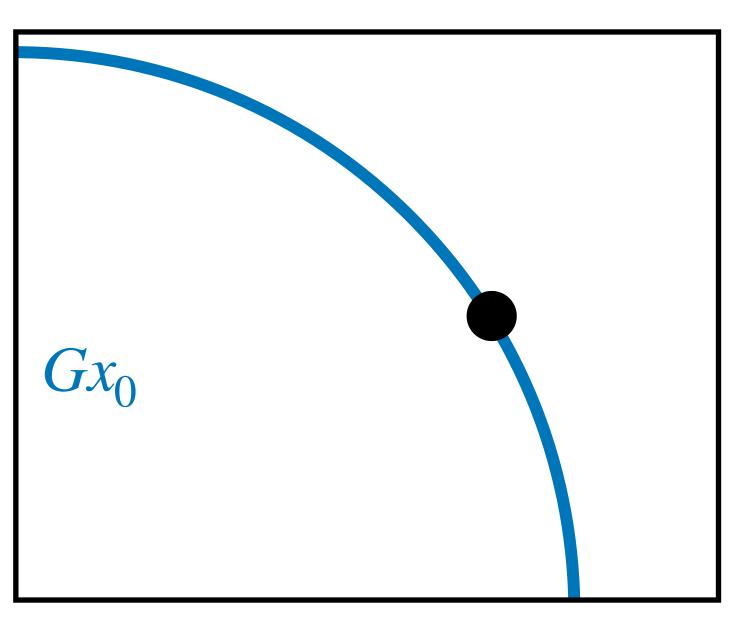




- **Transitive action**: An action \odot : $G \times X \rightarrow X$ such that
 - $\forall_{x_0, x \in X} \exists_{g \in G} : x = g \odot x_0$

SE(2) acts transitively on \mathbb{R}^2

SO(2) does not ...

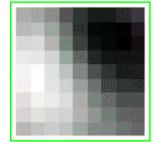


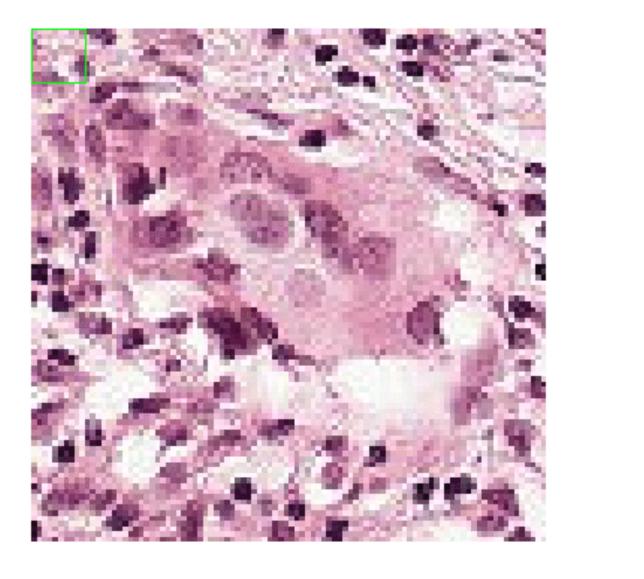
Homogeneous space

Homogeneous space: A space X on which G acts transitively.

This is important as then we can guarantee that every part of the signal can be "seen" (probed by the convolution kernel)

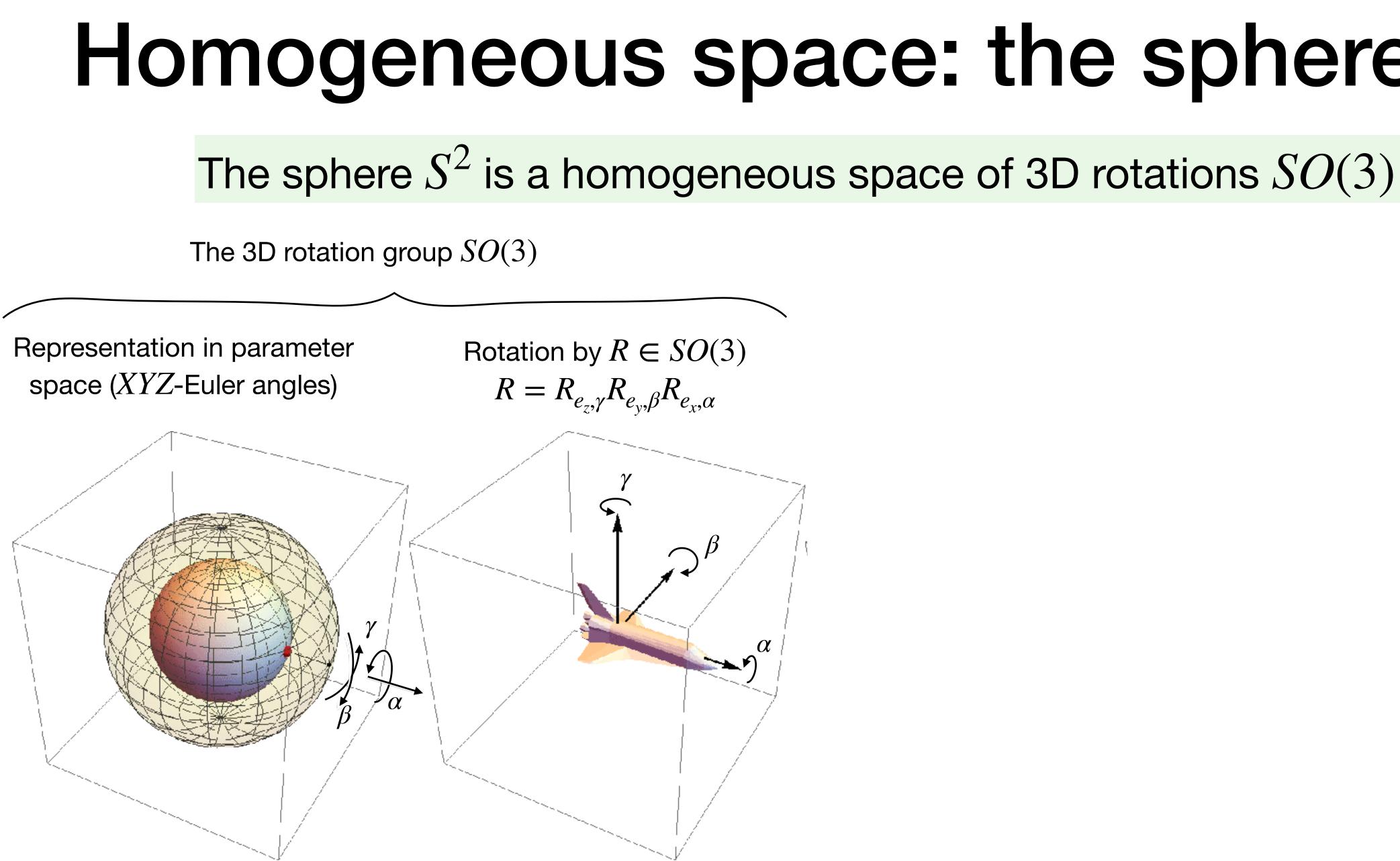
Homogeneous space



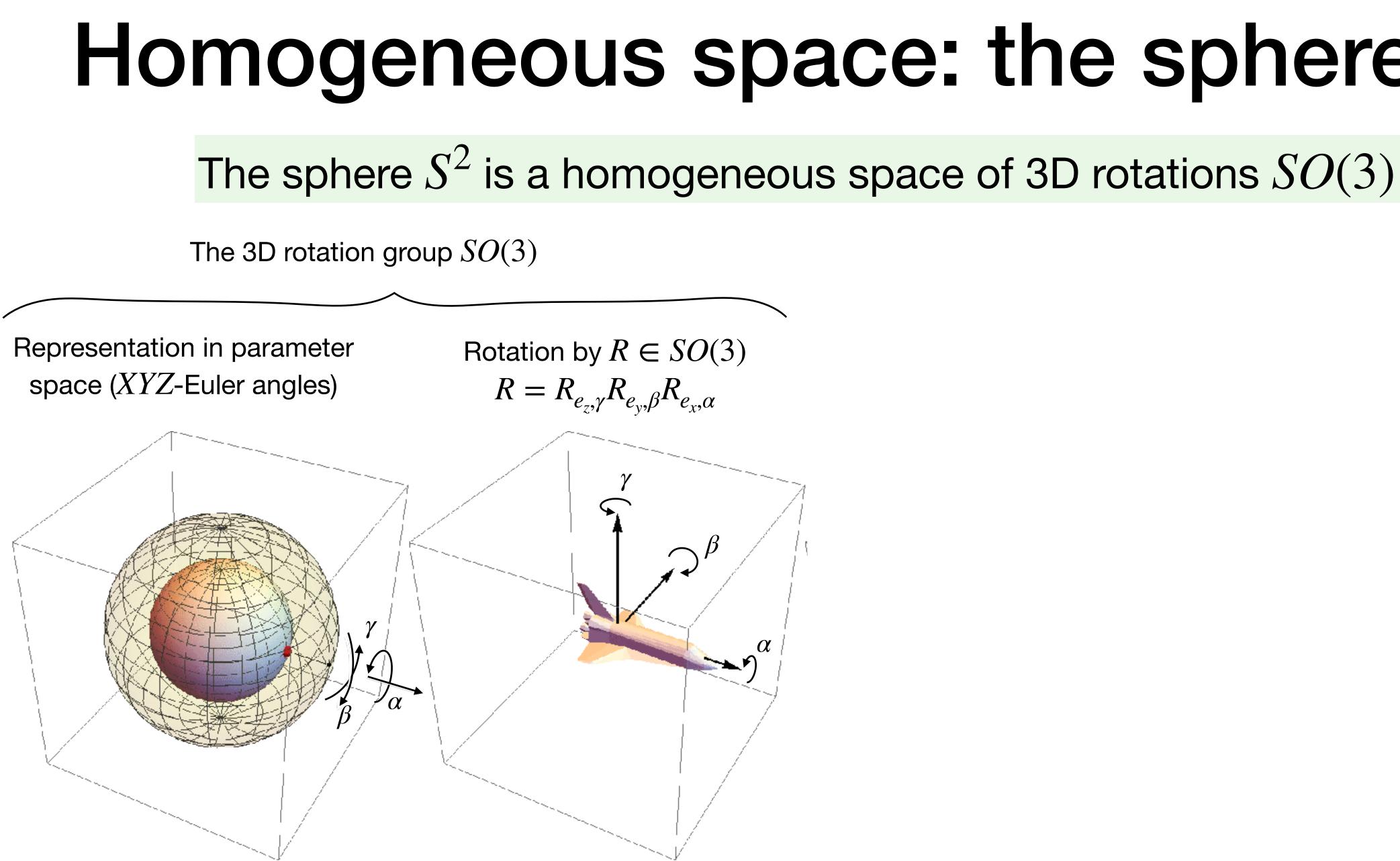


Homogeneous space: A space X on which G acts transitively.

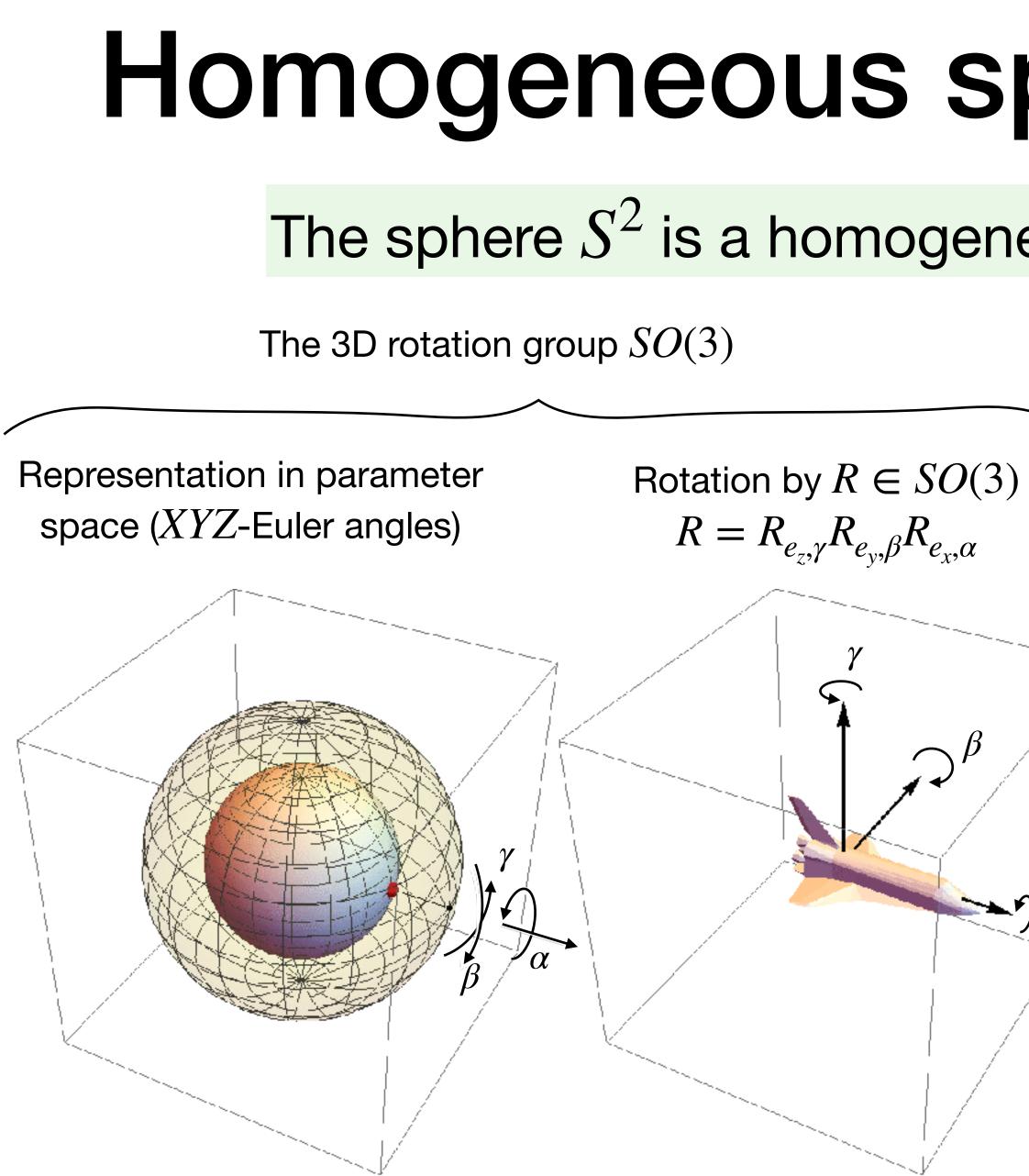
This is important as then we can guarantee that every part of the signal can be "seen" (probed by the convolution kernel)



Homogeneous space: the sphere S^2



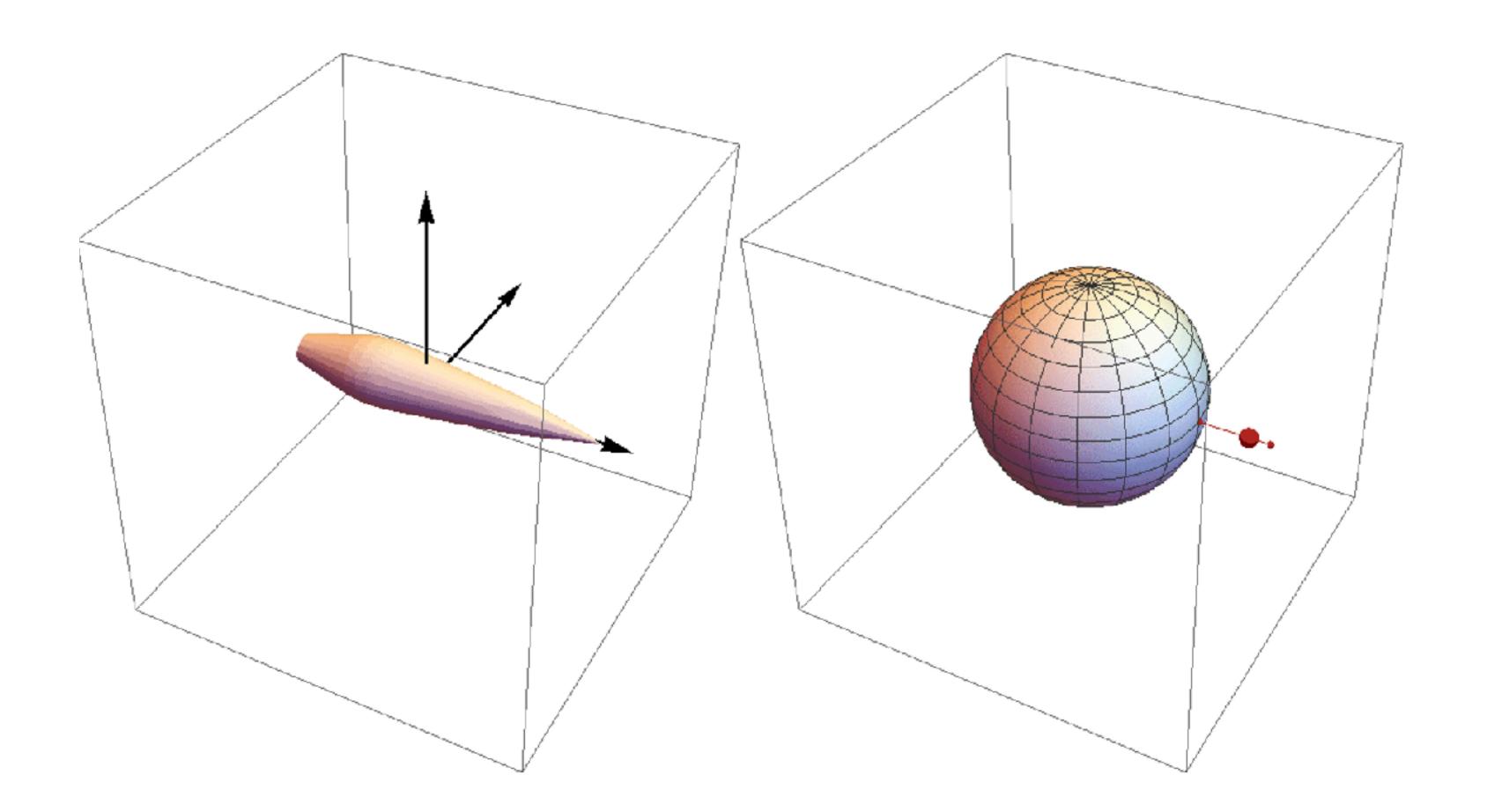
Homogeneous space: the sphere S^2

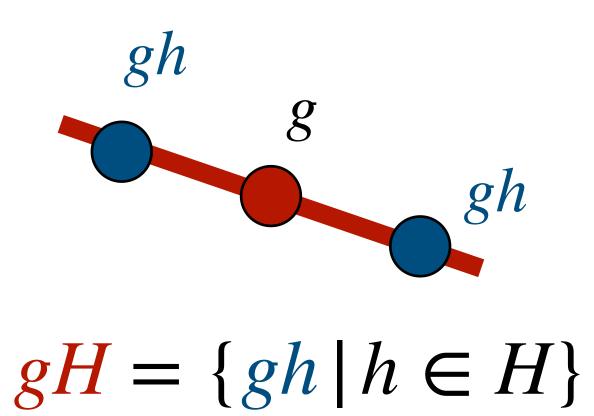


Homogeneous space: the sphere S^2 The sphere S^2 is a homogeneous space of 3D rotations SO(3)The 2-sphere as a quotient space $S^2 \equiv SO(3)/SO(2)$ α

Quotient space

Quotient space G/H: The space of unique cosets $gH = \{gh | h \in H\}$. Elements of the space G/H are cosets.

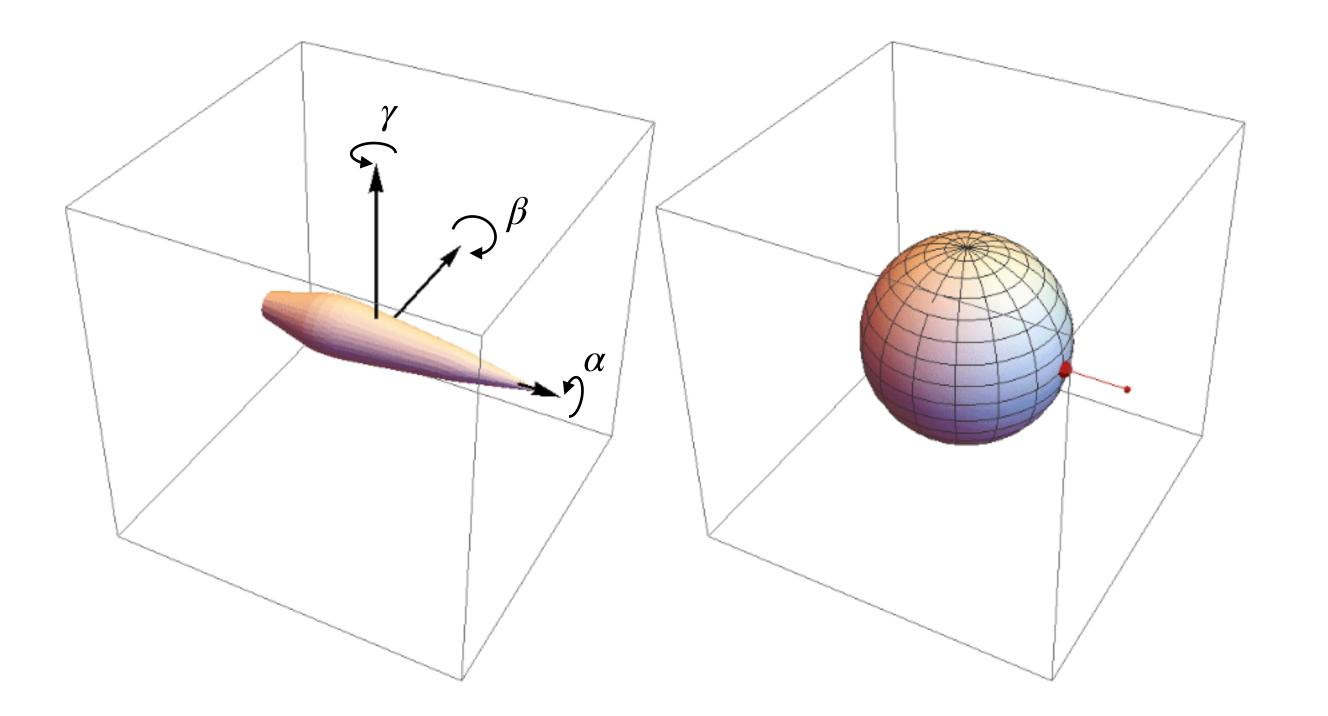




Stabilizer

Stabilizer: Stab_{*G*}(x_0) is a subset of *G* that leaves x_0 unchanged. I.e., Stab_{*G*}(x_0) = { $g | gx_0 = x_0$ }

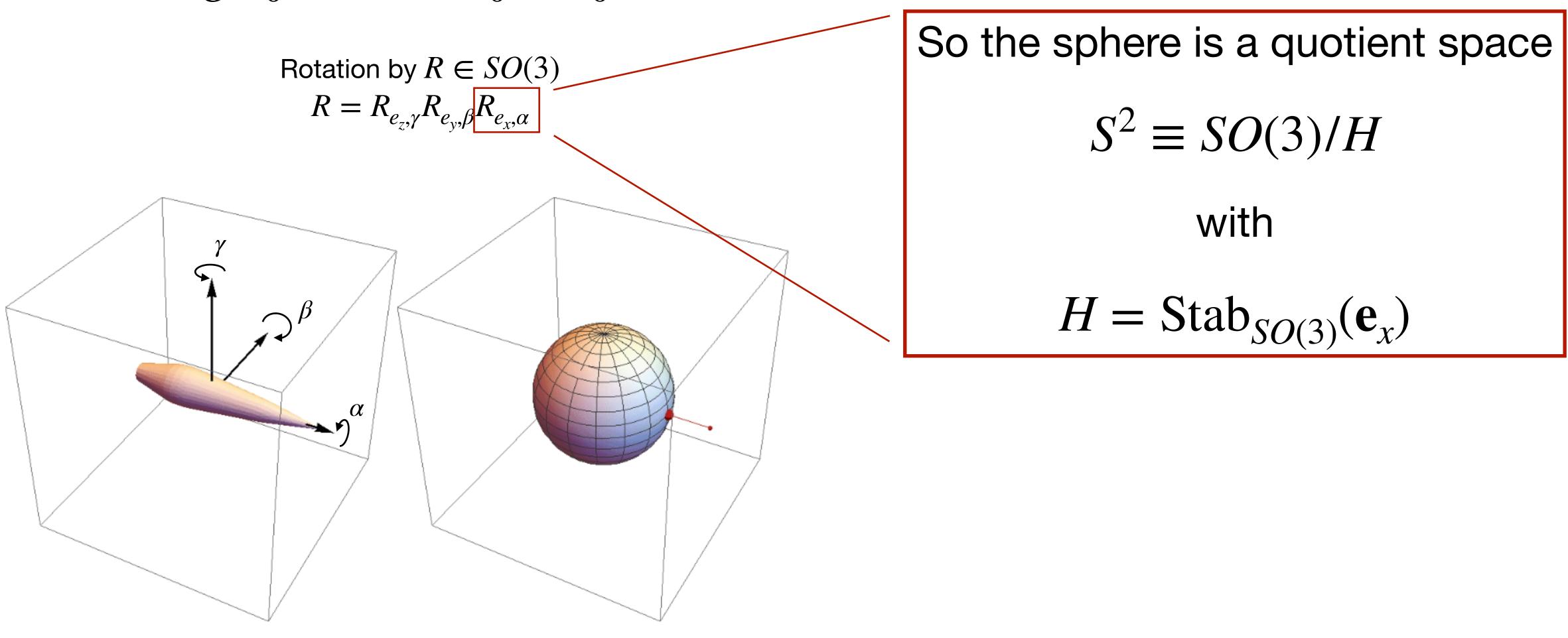
Rotation by $R \in SO(3)$ $R = R_{e_z,\gamma} R_{e_y,\beta} R_{e_x,\alpha}$



10

Stabilizer

Stabilizer: $\operatorname{Stab}_G(x_0)$ is a subset $\operatorname{Stab}_G(x_0) = \{g \mid gx_0 = x_0\}$



Stabilizer: Stab_G(x_0) is a subset of G that leaves x_0 unchanged. I.e.,

Homogeneous space \equiv Quotient space

Any quotient space is a homogeneous space

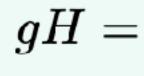
Any homogeneous space is a quotient space

11

Quotient space: the Euclidean plane \mathbb{R}^d

Lecture notes

Example 2.7 (Quotient space $\mathbb{R}^d = SE(d)/SO(d)$). Let $H = (\{0\} \times SO(d)$ the subgroup of rotations in SE(d), with 0 the identity element of the translationg roup $(\mathbb{R}^d, +)$. The the cosets gH are given by



with $g = (\mathbf{x}, \mathbf{R})$. So, the cosets are given by all possible rotations for a fixed translation vector \mathbf{x} , the vector \mathbf{x} thus indexes these sets. We can therefore make the identification

is a consequence of Lemma 2.1.

 $gH = \{g \cdot (\mathbf{0}, \tilde{\mathbf{R}}) \mid \tilde{\mathbf{R}} \in SO(d)\}$ $= \{ (\mathbf{Re} + \mathbf{x}, \mathbf{R}\tilde{\mathbf{R}}) | h \in SO(d) \}$ $= \{ (\mathbf{x}, \mathbf{R}\tilde{\mathbf{R}}) | \ \tilde{\mathbf{R}} \in SO(d) \}$ $= \{ (\mathbf{x}, \tilde{\mathbf{R}}) | \ \tilde{\mathbf{R}} \in SO(d) \},\$

 $\mathbb{R}^d \equiv SE(d)/SO(d)$.

We already saw in Exercise 2.1 that \mathbb{R}^d is a homogeneous space of SE(d), this

Conclusion

- A homogeneous space X is a space on which a group G acts transitively

• This is important as then we can reach any point in X via the action of G (when template matching we want to scan the entire space)

• Any homogeneous X space can be identified with a quotient space $X \equiv G/H$ (there is a point that is left invariant by a sub-group H)

