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Group Equivariant Deep Learning

Lecture 1 - Regular group convolutions

Lecture 1.5 - A brief history of G-CNNs


https://uvadl2c.github.io/

G-CNNs rule!

* The right inductive bias: guaranteed equivariance
(no loss of information)

* Performance gains that can’t be obtained by data-augmentation alone
(both local and global equivariance/invariance)

* |ncreased sample efficiency
(increased weight sharing, no geometric augmentation necessary)
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A brief history of G-CNNs

https://github.com/Chen-Cai-OSU/awesome-equivariant-network

Discrete G-CNNs

(square/cube symmetries) (manifolds)

Gauge-equivariant CNNs

Cohen-Welling 2016 Winkels-Cohen 2018

3D discrete roto-transl.

p4m
Hoogeboom et al. 2018 Coh tal 2019 Weiler et al. 2021
SE(2,6) O,C%';: h:dro p Coordinate Independent CNNs
Dieleman et al. 2016 Worrall-Brostow 2018 de Haan et al. 2020
p4dm 3D discrete roto-transl. Meshes
v
NNs CNNs G-CNNs
Worrall et al. 2017 Cohen et al. 2018
LeCun et al. 1990 o S?E(S) SE(3) | Bekkers 2019
o Lie groups (rotation, scale)
Esteves 2017 Kondor-Trivedi 2018
SO(3) VSVE(IS’) oo Finzi et al. 2020
Kondor 2018 e Lie groups
SE(3) Chakraborty et al. 2018
Thomas et al. 2018 Riemannian Hom. spaces |
SE(3) Weiler-Cesa 2019 Sosnovik et al. 2020
SE(2) Scale-translation
Continuous rotation G-CNNs Continuous G-CNNs
(steerable) (Lie groups)

Cesa-Lang-Weiler 2022
G = RY % H with H compact

https://quva-lab.github.io/escnn/
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Group Equivariant Convolutional Networks

Taco S. Cohen
University of Amsterdam

Max Welling

University of Amsterdum

University of California lrvine

Canadizn Institule [or Advanved Research

Abstract

We intreduce Group equivariant Convolutional
Neural Networks (G-CNNs), a natural gencral-
1zation of convolutiona!l neural networks that re-
duces sample complexity by exploiting svmme-
tries. (-CNNs nse G-eonvolutions, £ new type of
layer that enjoys a substantially higher degree of
weight sharing than regular convoluton layers.
G-convolutions increase the expressive capacity
of the network without increasing the number of
parameters. Group convolution layers are easy
to use and can be implemented with negligible
computational overhead for discrete groups gen-
erated by translations, reflections and rotations.
G-CNNs achieve state of the art results on Cl-
FAR10 and rotated MNIST.

1. Introduction

Deep convahational neural netwarks (CNNs. convnets)
have proven to be very powerful models of sensory data
such as images, video, and audio. Although a strong the-
ory ol neural network design 1s currently lacking. a large
ampunt of empirical evidence supports the nation that bath
comvolutiona! weigh! sharing and depth (among other fac-
tors) are important for good predictive performance.

Convolutiona! weight sharing is eflective because there is
a ranslation symmetry in mast perception tasks: the la-
bel function and data distribution are both approximately
imvariant to shifts. By using the same weights to analyze
or mudel euch purt of (he image., a convolution layer uses
far fewer parameters than a fully connected one, while pre-
serving the capacity to learn many useful transformations.

Pruceedings of (he 32" Tmemational C vnference on Machine
Learming. New York, NY, USA, 2016, JMLR: W&CP volume
48. Copyright 2016 by the authoris).

1.5.COIEN@ UVA.NL

M.WELLING@ UVA.NL

Convolution layers can be used effectively in a deep net-
work because all the lavers in such a network are wans-
lation equivariant: shifting the image and then feeding
it through a number of lzyers is the same as feeding the
originz| 1image through the same layers and then shifting
the resulting leature maps (4l least up w edge-ellects). In
other words, the symmetry (translation) is preserved by
gach layer, which makes it possible to expleit it not just
in the first, but also 1n higher layers of the network.

In this paper we show haw convolutional networks can he
generalized to expleit larger groups of symmetries, includ-
ing rotations and reflections. The notion of equivariance is
key w s generalizaion, so in section 2 we will discuss
this coneept and it< role in deep representation learning,
After discussing related work in section 3, we recall a num-
her of mathematical concepts in section 4 that allow us to
define and anzlyze the G-convolution in a generic manner.

In secrion §, we analyze the equivariance propertics of stan-
dard CNNs, and show that they are equivariant to trans-
lations but may fail tc equivary with more general trans-
formations. Using the mathematical [ramework [rom sec-
tion 4, we can define G-CNNs (section 6) by analogy to
standird CNNs {Lhe Jatter being the G-CNN for (he trunsla-
tion group). We show that G-convolutinns, as well as var-
ious kinds ol Layers used in modem CNNy, such as pool-
ing, arbitrary pomntwise nonlinearities, batch normalization
and residual blocks are ull equivariant, und (hus commpatible
with G-CNNs. In section 7 we provide eoncrete implemen-
Lilion details for group convolutions.

In section 8 we report experimental results on MNIST-rot
and CIFAR10, where G-CNNs achieve state of the art re-
sults (2.28%% error on MNIST-rot, and 4.19% resp. 6.46.%
on augmented and plain CIFAR10). We show that replac-
ing planar convolutions with G-convolutions consistently
improves results without additional uning. In section 2 we
provide a discussion of these results and consider several
extensions of the method, before cencluding in section 10.

NNS
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3D G-CNN:s for Pulmonary Nodule Detection

Marysia Winkels Taco S. Cohen
University of Amsterdam / Aidence University of Amsterdam
marysiafaidence.com taco.cohen@gmail . com
Abstract

Convolutsonal Neural Networks (CNNs) require a large amount of annotated data
to leam from, which is often difficult to obtain in the medical domain. In this
paper we show that the sample complexity of CNNs can be signaficantly improved
by using 3D roto-ranslation group convolutions (G-Coavs) instead of the more
conventional translational comvolutions, These 3D G-CNNs were applied to the
problem of false positive reduction for pulmonary nodule detection, and proved to
be substantially more effective in terms of performance, sensitivity to malignast
nodules, and speed of convergence compared to a strong and comparable baseline
archstecture with regular convolutions, data augmentation and a similar number of
parameters. For every dataset size tested, the G-CNN achieved a FROC score close
10 the CNN trained oo fen times more data.

1 Introduction

Lung cancer is curremtly the leading cause of cancer-related death worldwide, accounting for an
estimated 1.7 million deaths globally cach year and 270,000 in the European Union alone (1; 2),
taking more victims than breast cancer, coloa cancer and prostate cancer combined (3). This high
moetality rate can be largely attributed to the fact that the majority of lung cancer is diagnosed when
the cancer has already metastasised as symptoms generally do not peesent themselves ustil the cancer
is at a late stage, making early detection dafficult (4).

Screening of high risk groups could potentially

increase carly detection and thereby improve
the survival rate (5; 6). However, the (cost-)
effectiveness of screening would be largely de-  §

pendent on the skill, alertness and experience
level of the reading radsologists, as potentially
malignant lesions are casy to overlook due to the
rich vascular stracture of the lung (see/Figure 1),
A way 10 reduce observational oversights would
be to use second readings (7; 8), a practice in Figure 1: Lung nodule on axial thorax CT
which two readers independently interpret an

image and combine findings, but this would also drastically add to the already increasing workload
of the radiologist (9), and increase the cost of care. Thus, a potentially much more cost-cffective
and accurate approach would be to introduce computer aided detection (CAD) software as a second
reader to assist in the detection of lung nodules (10, 11).

For medical image amalysas, deep leamning and in particular the Comvolutional Neural Network (CNN)
has become the methodology of choice. With regards to pulmonary nodule detection specifically,
doep leamning techmigues for candidate generation and false positive reduction unambiguously
outperform classical machine learming approaches (12; 13; 14), Cosvolutional newral networks,
however, typacally require a substantial amount of labeled data 1o train on ~ something that is scarce

Parts of thas paper appeared previosaly is the first authoe’s thesis
15t Conference om Medical Imaging with Deep Leaming (MIDL 2018), Amsterdam, The Netherlands
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CubeNet: Equivariance to 3D Rotation
and Translation

Daniel \\,-orra"l 0000 <0002 -9810-0709] and Gabriel Brwwwl 100000001 - 8472 - 3528)

Computer Science Department, University College London, UK
{d.vorrall,g.brostow}@cs.ucl.ac.uk

Abstract. 3D Convolutional Neural Networks are sensitive to transforma-
tions applied to their input. This is a problem because a voxelized version of a
3D object, and its rotated clone, will look unrelated to each other after passing
through to the last layer of a network. Instead, an idealized model would
preserve a meaningful representation of the voxelized object, while explaining
the pose-difference between the two inputs. An equivariant representation
vector has two components: the invariant identity part, and a discernable
encoding of the transformation. Models that can’t explain pose-differences
risk “diluting” the representation, in pursuit of optimizing a classification or
regression loss function,

We introduce a Group Convolutional Neural Network with linear equivari-
ance to translations and right angle rotations in three dimensions. We call
this network CubeNet, reflecting its cube-like symmetry. By construction,
this network helps preserve a 3D shape’s global and local signature, as it is
transformed through successive layers, We apply this network to a vaniety of
3D inference problems, achieving state-of-the-art on the ModelNet 10 dassifi-
cation challenge, and comparable performance on the ISBI 2012 Connectome
Segmentation Benchmark. To the best of our knowledge, this is the first 3D
rotation equivariant CNN for vaxel representations.

Keywords: Deep Learning, Equivariance, 3D Representations

1 Introduction

Convolutional neural networks (CNNs) are the go-to model for most prediction-ba
computer vision problems. However, most popularized CNNs are treated as bla
boxes, lacking interpretability and simple properties concerning the data doma
they act on. For instance, in 3D object recognition, we know that object categories
nvariant to object pose, but convolutional neural network filters are orientation, sc
reflection, and parity (point reflection) selective. This means that every activat
in any intermediate layer is sensitive to local pose, and ultimately the global out)
of the network is too. A simple solution to obtain this sought-after invariance is
augment the input data with transformed copies, spanning all possible variatic
to which we seek to be invariant [2]. This method is simple and effective, but re
on an efficient and realistic data augmentation pipeline. There is also the argum

Cesa-rang-vvener 2022
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Fig. 2. (Best viewed in color) LEFT: The 24 rotations of the cube group Sy, applied to

the a cube Fx are shown. For instance, rotation g2 applied to the cube returns F =

x!

shown by the #22 in the bottom row. The 12 cubes wrapped in thin blue boxes are the
rotational tetrahedral group 7. The 4 cubes wrapped in thick dashed red lines are the Klein
four-group V. RIGHT: The Cayley table of the cube group, representing how rotations are
composed. For instance, on the BOTTOM LEFT, we have the example of composing rotation
g7 with rotation g;. The composition is performed by i) first applying g7 to the cube to
yield Fg_,-nx then ii) applying g1 to Fg_’—lx, returning F_q,“_q;‘x' The first transformation is

easy to visualize - it is by #7 in the grid of cubes. The transformation g; is a rotation by

90° counter-clockwise about the vertical axis, thus for the composition we rotate F‘h_

o]
1, 90

counter-clockwise about the z-axis. This results in F, i . This result is stored in the Cayley

table by placing the first rotation down the left oolumn and the second rotation along the
top row. The intersection of row 7 with column 1 is the rotation 8. On the BOTTOM RIGHT,
we show the composition gzg1 = g17 # gs = 197, demonstrating the non-commutativity

property of the cube group and 3D rotations in general.

https://quva-lab.github.io/escnn/
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HEXACONYV

Emiel Hoogeboom', Jorn W.T, Peters™ & Tace S. Colien
University of Amsterdam
[e.hoogebzom, j.w.t.rezexrs, t.3.cohen])Ruva.al

Max Welling
University of Amsterdam & CIEAR
m.w2llingiuvae.nl

ABSTRACT

The effectiveness of convolutional neural networks stems in large part from their
obility te exploit the trunslation invariance that 1s inherent in many learning prob-
lems. Recently, 1t was shown that CNNs can exploit other sources of invanance.
such as rotaton invarance, by using group covvolurions mstead of planar con-
volutions. However. for reasons of performance and ease of implemenrasion. it
has been necessary o limit the group convolution to transformations that can be
applicd w the [ilers wilhoot interpelation. Thus, for inmages with square pixels,
only integer onslatons, rototions by multiples of YU degress. and retlections are
wduussible.

Whereas the square tiling provides a 4-fold rotatonal symmetry, a hexagonal tiling
nf the plane has a 6-fold racarianal symmetry. In rhis paper we show how e can
cfficiendy implement planar conynlution and group comvnlurinn over hexagonal
lattices, by re-uxing cxisling highly opGmized convalutinn routines, We find that,
due to the reduced anisotropy of hexagonal filters, planar HexaConv provides bet-
Ler aocurasy thon planar convolutivn with square Glers, given a fised purameter
budge:. l'urthermore. we find thar the mereased degree of symmetry of the hexag-
onal grid increases the effectiveness ot group convolutions, by allowing tor more
parameier sharing. 'We show thar our method significantly outperforms eonven-
tdonal CNNs on the AID aenial scene classification dataset. even outperforming
TmageNet pretaainad models.

1 INTRODUCTION

lar sensorv perception tasks. neural networks have mostly replaced handcrafted teatures. Instead
ol defining features by hand using, domain knowledge, il ix now possible te learn them, resalling in
improved accuracy and saving a comsiderahle amouns of work. However. auccessful generalization
15 still criticully dependent va Gie inductive bias encoded in the nelwork archiecure, whether tis
bias 1s understood by the network architect or not.

The canonical example of a successtul network architecture is the Convolutional Neural Network
(CNN, ConsNet), Through convolutional weight shuaring, Ukese peiwocks exploit e foc tut o given
visual pattern may appear in different locations in the image with approximately egual likelihood.
Purthermore, this translation symmetry is preserved throughout the network, because o Tanslation
nf the inpur image leads tn a manslation of the feature maps ar each layer: eonvolutinn is ranslation
equivanant.

Very often, the cue label function (the mapping trom mmage to label that we wish wo learn) 15 1nvanant
i mare ransformarions than just translations. Rotadonms are an nbvious example, hut standard
ranslatonad convolutions cunnct exploit s symumeuy, because ey we ool rotation equivariaal,
Al turns oot convalution nperalion can he defined foe almostany group of teanslfommatinn e nnt
Just ranslations. By simply replacing convolutions with group convolutions (wherein Hiters are not
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(c) Offset (even rows) (d) Offset (odd rows)

three (blue) and five (blue and green). Standard 2D convolution using both feature map and filter

stored according to the coordinate system is equivalent to convolution on the hexagonal lattice. Note

that for the offset coordinate system two separate planar convolution are required — one for even
ot - and one for odd rows.
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(a) Original example images (b) Hexagonal sampled images

Figure 6: CIFAR-10 (top) and AID (bottom) examples sampled from Cartesian to hexagonal axial
coordinates. Zero padding enlarges the images in axial systems.
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Abstract. YWe propnse a framewarx for mtation and tranzlation envarie
ant desp laamming nsing SF(2) gronp convolntiona. The gronp product
of the special 'nehdean motion group S172] deseribes how a cancatena-
tian of tea yato-translations resnlis in a net roto-translation. We encode
thie genmetric structure inta comvnlutionsal nenral netwarks (C\\g) via
§1(2) group convolutional layers, which £t into the standard 2D CNN
framcwork, and which allow to generically deal with rotated input sam-
ples withowt the nced for date augmentation.

We introdnce three layers: a hfting layer which lifts 2 2D (vectar valnad)
image to an S22 mage, ia. 4D (vector valued] data whaose domain s
S1(2): a group convelution layer from and to an SL(2)-image; and a pra-
jection layer from an S1(2)-image to a 2D image. The lifting and group
convelution layers are SE(2) covariant (the cutput roto-translates with
the input). The ol projection laver, o maxiouw inleasily projection
aver rotations, makes the full ONN ratation wmaeriant.

We show with three different problems in histopathology, retinzal imaging,
and electron microscopy that with the propcosed group CNNs. state-of-
the-art performance can be achieved, without the need for data angmen-
Lation Ly rotation and with increased perlormooee compered Lo slandurd
CNNs that do rely oo augmentotion.

Keywords: CGroup convolutional network, roto-translation group. mi-
tosis detection, vessel scgmentation. ccll boundary segmentation
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1 Introduction

Tn (his work we generalize B2 convolulional neurs] networks (CNNs) Lo SE(2)
group ONNs [G-CNNS) o which the data lives on position orienlalion spaee,
and in which the convolution layers are defined in terms of representations of the
special Euclidecan motion group SE(2). In essence this means that we replace
the convolutions (with translations of a kernel) by SE(2] group convolutions
(with roto-lranslalions of a kernel). The advanlage of Lhe proposed approach
compared 1o slandard 2% ONNs s thal rolalion coverianee is encoded in Lhe
network design and does not have to be learned by the convolurion kernels. E.g.,
a fealure thal, may appear in Lhe data ander several orientations does nol have
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Rotaticn-invariance is a desired property of machine-learning moadels for medical image analysis and in |

particular for computational pathology applications. We propose a framework to encode the geometric
structure of the special Eudidean motion group SE(2) in cowolutional netwoarks o yeld translation and
rotation equivariance via the introducticn of SE(2)-group convolution layers. This structure enables mod-

SE (2 J 6) Z;:;rf;;\mluﬁonal neural netwerk
Worrall-Brostow 2018

Roto-translatioa cquivariance
Computational pathology
Mitosis detection

Tumar detaction

Mucle segmentation

discrete roto-transl.

M.W. Lafarge, E.J. Bekkers, | PW. Pluim et al.
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SE(2.N)
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Fig. 2. lllustration of the process generating a rotated set of effective kernels from
a trainable vector of base weights via the introduction of fixed interpolation matrix
in the computational pipeline.

outputs are invariant under a discrete set of rotations.

els W lears fecture representations with ¢ Jiscetized urientation dimension thet guarantees thet thei

Conventional approaches for rotation invariance rely mostly on data augmentation, but this dces not
guarantee the robustness of the output when the input is rotated. At that, trained conventional! CNNs
may require test-time rotation augmentation to reach their full capability

This study is focused on histopathology image analysis applications far which it is des rable that the arbi-
trary global orientation infcrmation of the imaged tissues is not captured by the machine learning mod-
els. Th2 proposed framewotk is evaluated on three different histopatholozy image analysis tasks (mitosis

Medical Image Analysis 68 (2021) 101849

experiments that we used to analyze and validate them. In the
construction of the G-CNNs we adhere to the following principle
of group equivariant architecture design.

G-CNN design principle A sequence of layers starting with a lift-
ing layer (Eq. (7)) and followed by one or more group convolu-
tion layers (Eq. (9)), possibly intertwined with point-wise non-
linearities, results in the encoding of roto-translation equivariant
feature maps. If such a block is followed by a projection layer
(Eq. (10)) then the entire block results in a encoding of features
that is guaranteed to be rotationally invariant. Our implementation
of the G-CNN layers is available at https://github.com/tueimage/

omparative aralysis for cach problem
when using the proposed framework.,

Author(s). Published by Elsevier BV,
rticle undar the CC BY-NC-ND license

commons.org/licenses/by-nc-nd/4.0/)

se2cnn.

4.1. Applications and model architectures

For each task introduced in Section 3.1 we conducted two ex-
periments: first, we trained a set of variations of a baseline CNN,
by changing the orientation sampling level N of their SE(2,N) lay-
ers, while keeping the total number of weights of each model ap-
proximately the same. Second, we trained each model with the re-
duced data regime counterparts of the training sets introduced in
Section 3.1. For each task we opted for versions of straight-forward
architectures with a low number of parameters that were in-line
with methods reported in the literature. This way, we propose new
G-CNN baselines that facilitate comparative experiments and that
can be extended to more sophisticated architectures.

Mrtosus detecnon We used the mitosis classnﬁcauon model orig-

To/escnn/ R -

— NUpS77auva-lan.dl

!



A brief history of G-CNNs

https://github.com/Chen-Cai-OSU/awesome-equivariant-network

Discrete G-CNNs

(square/cube symmetries) (manifolds)

Gauge-equivariant CNNs

Cohen-Welling 2016 Winkels-Cohen 2018

3D discrete roto-transl.

p4m
Hoogeboom et al. 2018 Coh tal 2019 Weiler et al. 2021
SE(2,6) O,C%';: h:dro p Coordinate Independent CNNs
Dieleman et al. 2016 Worrall-Brostow 2018 de Haan et al. 2020
p4dm 3D discrete roto-transl. Meshes
v
NNs CNNs G-CNNs
Worrall et al. 2017 Cohen et al. 2018
LeCun et al. 1990 o S?E(S) SE(3) | Bekkers 2019
o Lie groups (rotation, scale)
Esteves 2017 Kondor-Trivedi 2018
SO(3) VSVE(IS’) oo Finzi et al. 2020
Kondor 2018 e Lie groups
SE(3) Chakraborty et al. 2018
Thomas et al. 2018 Riemannian Hom. spaces |
SE(3) Weiler-Cesa 2019 Sosnovik et al. 2020
SE(2) Scale-translation
Continuous rotation G-CNNs Continuous G-CNNs
(steerable) (Lie groups)

Cesa-Lang-Weiler 2022
G = RY % H with H compact

https://quva-lab.github.io/escnn/




A brief history of G-CNNs

https://github.com/Chen-Cai-OSU/awesome-equivariant-network

Discrete G-CNNs

(square/cube symmetries) (manifolds)

Gauge-equivariant CNNs

Cohen-Welling 2016 Winkels-Cohen 2018

3D discrete roto-transl.

p4m
Hoogeboom et al. 2018 Coh tal 2019 Weiler et al. 2021
SE(2,6) O,C%';: h:dro p Coordinate Independent CNNs
Dieleman et al. 2016 Worrall-Brostow 2018 de Haan et al. 2020
p4dm 3D discrete roto-transl. Meshes
v
NNs CNNs G-CNNs
Worrall et al. 2017 Cohen et al. 2018
LeCun et al. 1990 o S?E(S) SE(3) | Bekkers 2019
o Lie groups (rotation, scale)
Esteves 2017 Kondor-Trivedi 2018
SO(3) VSVE(IS’) oo Finzi et al. 2020
Kondor 2018 e Lie groups
SE(3) Chakraborty et al. 2018
Thomas et al. 2018 Riemannian Hom. spaces |
SE(3) Weiler-Cesa 2019 Sosnovik et al. 2020
SE(2) Scale-translation
Continuous rotation G-CNNs Continuous G-CNNs
(steerable) (Lie groups)

Cesa-Lang-Weiler 2022
G = RY % H with H compact

https://quva-lab.github.io/escnn/




NNs

2 m

leutt 2 Rral and i ma') parts of the complex Gaussian filer
W (re'=" 0) v ' '™’ luxmnmmmh\ As a simple
exanple, we have set f(r)=e¢ Yand 8= 0, but in general we leam
these quanttics. Cross-comrelaton, of & feature map of rotation order
e with coe of these filuers of rotaton onder e, ressls mn a feature map
of rotation onder m 4, Note the negative rotaton order filters have
(hppod imaginary parts compared 10 the positive ceders,

feature maps, which live in a discrete domain. We shall mstead
use continuous spaces, because the analysas 1s casier. Later on
in Section 4.2 we shall demonstrate how to comvert back (o the
discrete domain for practical implementation, but for now we
work entirely in continwous Euclidean space.

3.1. Equivariance
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Abstract

Transiuting or rvating an wpad image shiowld not affect the
resules af many computer vision tacks. Comvelutional newral net-
works (CNNs) are already translation equavariant: input image
terndationy !mnbu'rr prroguerisondte _frztlum mup) treenslodions.
This is not the case for rataticns. Global rotation equrvariance
i typreally songln vuousgh dula asgmeniadion, bul palchi-wise
equavanance 15 more dighculs. We present (armomic Netwarks
or H-Nets, a CNN exdubiling equivanunce o patch-veise iran-
larion. and 36t-ratation. We achieve this by replacing regular
CNN filters with cimular harmanics, reneming @ maxanal
respemyy and oriemaion [for every recepiive field paick.

H-Nels wse a rich, parameter-gfficiend and Jised compnlti-
tirmal complexity vepresentanan, and we show that deep fearure
maps within the network encode complicated rovaiienatl invasi-
ants. We demonsteate thar owr layers are geneval encugh w he
used in conjunction with the iatest architectures and teclmiques,
sk ax deep supeevioon aned botch normoligation. We ol
aclieve state-of-the-art ¢lasaification on rotated-MNISI, and
compeitlive resuils on viher benchmark chullenges,

1. Tntrmdnrctinn

represerting JoU° -rotations
{CNNs) [19]. Currcutly,
by design to map an image
ref versions of the umage map
omy nif the same featre vector
Figure 1. However, untl now,
en the feaure vectors do not
ul ar casy 10 prodict manner.
¢ relating input ransformations
18 callad equivariance.
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Figuere 3, DowN: Cross-comrelation of e inpet pasch with W, yields

a scalar complex-valued response, ACROSS-THEN-DOWN:  Cross-

correlation with the &.rotated image yields another complex-valoed
response. BOTTOM: We transform froen the unrotated response to the
rotated respoase, through multiplication by '™,

Here r.4 are the spatial coordinates of image/feature maps, ex-
pressed in polar form, m € Z is known as the rotation order,

1 myvananes, where featurs
wansformations of the input.
riahally for a madel, such ag a
1l 1ot to restrict all intermedinte
pation iwvariant. For example,
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Figure 1. Patch-wise traaslation equivariance in CNNs afises from
rransiatinnal wed pht tysng, &0 thar 3 rransianion m of rhe iaput image 1,
keuds w0 4 comesponting trunslauca 1 of the leature maps f (1), where
s =40 In general, due to pooling effects. Howeser, for rotations. CNNs
do not vet have a featwre spoce truasformetion o0 hard-baked” into
their srrscture, and it i ecomplicatad 1o discover whar o) may be, it ir
ex1gs ul all, Hameome N eosvorks buve s hard-buked eprescenlubon,
which allows for casicr interpretation of feature mops—see Figuee 3.

consider detecting a deformahle ohject, such as a butterfly. The
posz of the wings is limited in tange, andso there are only certain

pases our deteetor should normally see. A transformation imvari-

ant detector, good at detecting wings, would detect them whether
they were higger, further gpart, nested, cte., snd it would encode
all these cases with the same representation. It would fail o
nolce noascuse sitvations, however, such as a butterdly with
wings rated past the usual range, becanse it has thrown that
extra pose information away, An egquivariant detectos, on the
other hand, docs not dspose of local pose information, and so
hands on a ncher and more useful representation to downstredm
processes. Fruivanianee conveys more mfoemation about an
mput 1 downstréam processes, it also constrains the space of
possible Icamed mdcls to those that arc valid under the rules of
natural image formation [ 0], Thos makes leaming moce relable

and helps with genetalization. For instance, consider CNINs.

T'he key isight 15 that the stanstes of naturmal mages. emhbodied
in the cowrelations between pixels, are a) Livariant w0 uanskation,
and b} highly Incalized. Thus features at cvery Teyer in s CNN
are computed on local recepuve fields, where weights are shared
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Real

Imaginary

Figure 2. Real and imagi parts of the complex Gaussian filer
W (re'e™" 0)=e""" ", for some rotation onders. As a simple
exanple, we have set f(r)=e¢ " and =0, but in pencral we leam
these quanttics. Cross-comrelaton, of & feature map of rotation order
e with coe of these filuers of rotaton onder e, ressls mn a feature map
of rotation onder m 4, Note the negative rotaton order filters have
(hppod imaginary parts compared 10 the positive ceders,

feature maps, which live in a discrete domain. We shall mnstead
use continuous spaces, because the analysas 1s casier. Later on
in Section 4.2 we shall demonstrate how 1o comvert back 1o the
discrete domain for practical implementation, but for now we
work entirely in continuous Euclidean space.

3.1. Equivariance
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Figuee 3, DowN: Cross-comrelation of the inpet pasch with W, yields
a scalar complex-valued response, ACROSS-THEN-DOWN:  Cross-
correlation with the &.rotated image yields another complex-valoed
response. BOTTOM: We transform froen the unrotaled response to the
rotated respoase, through multiplication by '™,

Here r.é are the spatial coordinates of image/feature maps, ex-
pressed in polar form, m € Z is known as the rotation order,
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nolce noascuse sitvations, however, such as a butterdly with
wings rated past the usual range, becanse it has thrown that
extra pose information away, An egquivariant detectos, on the
other hand, docs not dspose of local pose information, and so
hands on a ncher and more useful representation to downstredm
processes. Fruivanianee conveys more mfoemation about an
mput 1 downstréam processes, it also constrains the space of
possible Icamed mdcls to those that arc valid under the rules of
natural image formation [ 0], Thos makes leaming moce relable
and helps with genetalization. For instance, consider CNINs.
T'he key isight 15 that the stanstes of naturmal mages. emhbodied
in the cowrelations between pixels, are a) Livariant w0 uanskation,
and b} highly Incalized. Thus features at cvery Teyer in s CNN
are computed on local recepuve fields, where weights are shared
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We present a convolutional network that is equivariant to rigid bodv motions.
The model uses scalar . vector , and tensor fields over 2D Euclidean space (0
represent data, and scuivariant convolutions to map between such renresentations.
These SE|3) equivanant convelutions utilize kemels which are parameterizad
as a limear combination of a complete steerable kernel basis, which 1s dernved
analytically in this paper. We prove that equivariant convolutions are the mnst
general equivariant linear maps betwezn fields over B, Our experiniental resulls
confirm the effectivencss of 3D Steerable CNNs for the preblem of amine eeid
propensily prediction and protein stuctwe classification, both of which have
inherent SII3 symmetry.

1 Infroduction

Increasingly, machine leaming techniques are being appliec in the natural sciences. Many problems
1n this doma:n, such as the analysis of protein structure, exhab:t exact or approximats symmetriss.
It has Tong heen understood that tha equations thar define = madel or natural law should respacr
the symmetrics of the system under study. and that knowlsdge of symmetries provides 2 powerful
constraint on the space of admissible madels. Indeed, in thooretieal physics, this idea is enshrined
as a fundamental proaciple, known as Einstein's prnciple of general covaiance, Machine lea ning,
which 13, like physies, concerned with the induction of predictive models, is no diffzrent: onr models
must respect koown synunelies w order W produce physically weaningful resulls.

A lot of recent wurk, reviewed in Sey, E. has focused on the problem of developing equivariant
networks, which respeet some known symmery. In this peper, we develop the theory of SE30-
equivatiant nelworks, This is far oo tivial, because SE(3) is both pen-commutalive and con-
compact Nevertheless, at run-time, all that is required to make a 20 canvalution squivariant nsing our
method, 1s W parameterize the convolution keroel as 2 linear combinaticn ol pre-computed sleerable
besis kemnels. Henes, the 3D Stecrable CNN incorporates equivarianoe to symmetry transformations
weithout deviating L [rom current engineeing best practices,

The wchilectues presented here [all within the ramework ol Steerable G-CNNs [8, 10, 40, 45],
which represent their input as ficlds over & homogenccus space (R° in this casc), and use stecrable

¥ Equal Conuibuton. MG initiated the project, derived the ketnel space constraint, wiots the fust netwock
inglementation and can the Shreel? expaiment. MY sclved the <ernel constraint analytically, designed the
unti-ubiased kernel sampling in discrete spuce and coded / ran muny of the CATE experiments.

Suurce code 15 uvailuble al https: //zithut. con/nar-ogeiger/zedcon

20 Conference on Neoral Infarmation Mrocessmyg, Systems (NenrlPS 200 8), Montrés || Clanada

https://quva-lab.github.io/escnn/




Published as a conference paper at ICLR 2022

A PROGRAM TO BUILD
E(n)-EQUIVARIANT STEERABLE CNNS

Gabricle Cesa T.can T.ang Maurice Weiler

Qualcomm AT Research® University of Amsierdam  Tlniversity of Amasterdam
[niversity of Amsterdam I . langiduva.n m.wellev.miégmai | Lcom
goceszlgti.qualcorm.ccm

ABSTRACT

Lquivanance is becoming an increasingly popular design choice to buld data
ethcient neural petworks by explowting poor knowledge about the symmetuies of
the problem at hand. Euclidean steerable CNNs are one of the most common classes
of equivariant networks, While the constraints these architectures need to satisly
are understood. existing upproaches are tailored Lo specific (classes of) groups. No
generally applicable method that is praciical for implementation has been described
so far, In this work, we generalize the Wigner-Eckart theorem proposed in Ling &
‘Weiler (2020, which characierizes general G-sieerable kernel spaces for compact
groups G aver thedr homngencous spaces, 1o arbitrary (7-spaces. This enables ns i
directly parameterize filters in terms of o band-limited basis an the whole space
ratker than on G’s orbits, but also to eas:ly implement steerable CNNs equivariant
to a large number cf groups. "lo demonstrate its generality, we instantiate our
method on a variety of isometry groups acting on the Euclidezn space &Y. Our
framework allows us to build E(3) and SE(3)-stezrable CNNs Like previous works,
but alse CNNs with arbitrary G < O(3)-steerable kerpels. For example, we build
3D CNNs equivariant (¢ the symmetries of platonic solids or choose G — SOi2)
when working with 3D dat: having only azimuthal symmetries. We compare these
models on 3D shapes and molecular datasets, observing improved performance by
matching the model’s symmetrics (o the ones of the data.

1 INTRODUCTION

In machine leaming, it is common for leaming tasks o present & number of symmerries. A symmetry
in the data oceurs, for example, when some property (e.2.. the label) does not change if a sct of
transformarions is applied o the dara dtself, e.g. rranclations or ratarions of images. Symmaerries are
algehraically described hy groups If prior knowledpe abnit the symmetries of a task 18 available,
it is usually beneficial to encode them in the models used (Shawe-Taylor, 1989; Cohen & Welling,
2016a). I'be property of such models is referred 10 as equivariance and 1s obtained by introducing,
some equmanance constraunts in the architecture (see Eq A classical example are convolutional
neural networks (CINNs), which achueve tanslation equivariance by constraining linear layets o be
convolution opetators, A wider class of equivatiant models are Euclidean steerable CNNs (Colen &
Welling, 2016b; Weiler el ul., 2018a; Weiler & Cesy, 2019; Jenner & Weiler, 2022), which guarantee
equivariance (0 isometries K" x & of a Buclidean space B™, i.e., w0 trnslations and a group G of
origin-preserving wransformations, such as rotations and reflections. As proven in We:ler a%(zowa:
2021 );Gr:;mcr & Weiler (2022), this requires eonvolurions with Ca-steernhle (equivarianr) kernels.

Onr goal is developing a program ta parameterize with minimal requirements arhitrary (5-steerahle
kemel spaces, with compact (7, which are required to implement B" w (7 equivar:ant CNNs. Lang &
Wedler (2020) provices a fust step i this durection by gencralizing the Wigner-Eckarf theorem from
quantum mechanics to obtain a general technique o parametrize G-steerable kernel spaces over vrbils
of a compact . The theorem reduces the task of building steerable kerne] bases (o thal of finding some
pute representation theoretic ingredients. Since the equivatiance constraint only relates points gz €
E™ in the same orbit Gz < ™, a kernel can take independent values on different orbits. Fig. 1]shows

"Qualcomm Al Research is an iniative of Qualenmm Technnlogies, Inz,

README.md

General E(2)-Equivariant Steerable CNNs

Documentation | Experiments | Paper | Thesis
e2cnn is a PyTorch extension for equivariant deep learning.

Equivariant neural networks guarantee a specified transformation behavior of their feature spaces under
transformations of their input. For instance, classical convolutional neural networks (CNNs) are by design
equivariant to translations of their input. This means that a translation of an image leads to a corresponding
translation of the network's feature maps. This package provides implementations of neural network modules
which are equivariant under all isometries E(2) of the image plane R2 , that is, under translations, rotations and
reflections. In contrast to conventional CNNs, E(2)-equivariant models are guaranteed to generalize over such

)18 transformations, and are therefore more data efficient.
anSl. L r<in\ r H H o [ P } AN al oLl P | £ £ Ll a1l | PR
p— I::r:Getting Started
=(2,6 gray-
Wi e2cnn is easy to use since it provides a high level user interface which abstracts most intricacies of group and
3 DO‘ representation theory away. The following code snippet shows how to perform an equivariant convolution from an
RGB-image to 10 regular feature fields (corresponding to a group convolution).
G
from e2cnn import gspaces # 1 0
017 from e2cnn import nn # 2
import torch # 3
# 4
(68”2‘ r2_act = gspaces.Rot2dOnR2(N=8) # 5
’()63) "  feat_type_in = nn.FieldType(r2_act, 3%[r2_act.trivial_repr]) # 6
Kondor 2018 feat_type_out = nn.FieldType(r2_act, 10*[r2_act.regular_repr]) # 7
SE(3) # 8
conv = nn.R2Conv(feat_type_in, feat_type_out, kernel_size=5) # 9
Thome relu = nn.RelLU(feat_type_out) # 10
# 11
x = torch.randn(16, 3, 32, 32) # 12
] X = nn.GeometricTensor(x, feat_type_in) # 13
Continu # 14
y = relu(conv(x)) # 15

Line 5 specifies the symmetry group action on the image plane R? under which the network should be equivariant.
We choose the cyclic group Cg, which describes discrete rotations by multiples of 21t/8. Line 6 specifies the input
feature field types. The three color channels of an RGB image are thereby to be identified as three independent

_scalar fields, which transform under the trivial representation of Cg. Similarly, the output feature space is in line 7
h (PS.7790Va-1dio. Uit TuD. TO7€SCTITT/
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ARSTRACT

Group convalutional neural netwarks (G-OUNNs) can be used to improve classi-
cal CNNs by equipping them with the geometric structure of groups. Cental
n the suecess of (-CNINs iz the lifting ot feature maps to higher dimensional
disentangled representadons in which data characteristics are cffoctively Icamed,
gcometric data-augmentations arc made obsoleie, and predictable behavior under
geometie ransfommutions (equivariance) is guurantesd via group theory, Cur-
rently, however, the practical implementations of G-CNNs are limited to either
discrete groups [hat leave the gnd intact) or conlinuvous compact groups such as
rotations (that enahle the use of Fourier thenry). In this paper we lift these lim-
itations and proposz a modular framework for the desipn and implementation of
(F-CNNs for arbitvary ie groups. In our approach the differential strociure of
Lic groups is used to cxpand convelution kemels in a genceric basis of B-splines
Grat s defined on the Lie algebro. This leads (o a fesible Taumnework thal enebles
localized, wirous, wd defvrmable conveluliwns 1 G-CNNs by mrans of respec-
dvely focalized. spurse wnd aon-wnifurm B-spline expunsions. The mpact and
potential of our approach 1 studied on twn henchmark datasets: cancer detection
in histopathology slides in which rotation equivariance plays a key role and facial
landmark localization m which scale cquivariance 18 important. In both cases, G-
CNN architectures outperform their classical 2D counterparts and the added valuc
of atrous and localized group convelutions 1s studied in detail,

story of G-CNNs

;om/Chen-Cai-OSU/awesome-equivariant-network

ries)

a/[s-Cohen 2018
crete roto-transl.

Hoogeboom et al. 2018

SE(2,6)

Gauge-equivariant CNNs
(manifolds)

Cohen et al. 2019
Icosahedron

Worrall-Brostow 2018
3D discrete roto-transl.

G-CNNs

Weiler et al. 2021
Coordinate Independent CNNs

de Haan et al. 2020
Meshes

/orrall et al. 2017 Cohen et al. 2018
SE(2) SE(3)
Esteves 2017 Kondor-Trivedi 2018

Bekkers 2019

1 INTRODUCTION Lie groups (rotation, Scale)

arX1v:1909.12057v4 [cs.LG] 22 Mar 2021

Group convolutional neural pelworks (G-CNNs) wre @ class of pearal networks thol are equipped
with the geometry of groups. This enables them to profit from the structure and symmetries in
signual duta such us images (Coben & Welling, 20160, A key feature of G-CNNs is that they ae
equivaniant with respect to transtformatians descrihed hy the group, i.e., they puarantee predicrable
hehaviar under such mmansfarmanions and are imzengitive to hoth lncal and global mansformanons on
the inpur data. Classical CNNs are a speaial case of (=CNNa that are equivanane m ranslations and,
in contrast to unconstrained NN, they make advantage of (and prescrve) the basic structure of signal
duta throughout the network (LeCun el al., 1990). By considenng lmger groups (Le. considering
ol just lranslation equivananee) addilional geomelric structure cen be utilized in owder (o improve
performance and data efficiency (see G-CNN Literature in Sec. E).

Part af the sueeess of G-C’NNs can be atributed to the lithng of teatura maps ™ higher dimen-
sional objccts that are gencrated by matching kernels under a range of poses (transformations in
the group). This lcads to a disentangicment with respect to the pose and together with the group
structure tus enables o Qexible way of learning high level representations in tenns of low -kevel ucli-
vited neurons observed in specific configurations, which we conceptually illustrate in Fig. 1] From
w neuro-psychologicul viewpoint, this resembles u hieraclucal composition from low- to high-level
features akin to the recognition-by-components maxdel hy Riederman {1987), a viewpaint which is
alzo adoptad in work on capsule networks (Hinton et al., 2011 Sabour et al |, 2017). In particular in
tl.enssen et al., XN K) the group thearencal conmecrion is made explicit with equivariant capsules thar
provide a sparsc index/valuc representation of feature maps on groups (Gens & Domingoes, 20140,

SO)

Kondor 2018
SE(3)

Thomas et al. 2018
SE(3)

SE(3)
Weiler et al. 2018
SE(3)

Finzi et al. 2020
Lie groups

Chakraborty et al. 2018

SE(®)

Riemannian Hom. spaces
Weiler-Cesa 2019

Sosnovik et al. 2020
Scale-translation

B-spline on R?

| _ _/l L

B-spline on §¢

Figure 2: The Log-map allows us to
map elements from curved manifolds
such as the 2-sphere to a flat Euclidean
tangent space. For Lie groups the Log-
map is analytic, globally defined, and
it provides us with a flexible tool to
define group convolution kernels via
B-splines. In our Lie group context
the 2-sphere is treated as the quotient
S0O(3)/S0O(2). Technical details are
given in Sec. 3 and App. B.

Continuous G-CNNs
(Lie groups)

A" 44
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ABSTRACT -

Motivated by the vast success of deep cenvolutional networks, there is a great interest in g eboom et al. 2018 [ L J 1 (07PN L\
generdlizing convolutions  non-Euclidean mam/olds, A major complicalion i sompar- S E( 2 s 6 ) 7N\ '
1son Lo Lzl spaces 1s that it 1s unclear in which alignment a convolution xemel should be
applied on a manifold. The underlying reason for this ambiguity 1s that general manifolds ‘
do not come with a canonical choice of reference frames (gauge). Kernels and features Worrall-Brostow .

therefore have te be expressed relative to arbifrary coordinates. We argue that the par- 3D discrete roto-t / ;’? ; E

\ x———
ticular choice of coordinatization should not affzct a network's inference - it should be \\ = e ’,//
coordinate independens. A simulianeows demeand Tor coondinate independence znd weight \ [ *‘\\ N\
sharing s shown (o result in a requiremenl an the netwaork o be equivarion under loeal “%"
gauge transformations (changes of local reference frames). The ambiguity of reference G‘C N NS n .. . - ey
frames depends thereby on the G-structure of the manifold, such that the necessary level ®) M=R", ¢=30(2) ) M=25" G¢=280(2]
of gauge cquivariance is prescribed by the corresponding struciure g ;. Coordinate
ind%pefxfler?t cnnvnlutinnsp:rce proven 31 he equiwrf‘i,:nt v.'.fr. those ¢m“.:.7fm that are sym- etal. 2017 Cohen et al ' P i N
metries of the (J/-structure. The resulting theory is formulated in a coordinare free fashion 5 i -
in terms of Aber bundles. To exemplify the ::i)gn of coordinate independent convolutions, E (2) SE(3) ILL—& ] E.E u-é /(‘-A — [—. \-"’\
we mmplement a convolutional network on the Mébius strip. The generality of our differ- Este ves 201 7 K on¢ ' / \
eatial geometric formulation of convelutionzl networks is demonstrated by an extensive & |||L. FL_“ ( Lb u
literature review which explains a large number of Euclidean CNNs, spherical CNNs and S O( 3 ) : \ ) L_ | R

{'NNs on general surfaces as specific insrances of conrdinare independent convolutions. n | \\ ,
Kondor 2018 L L N
T SE(3) > @ -
» VACR -H

> Thomas et & ) M=R G=4 (k) M = 5¥\pales, G = {c} () M = Mobius, G =R

S

™

SE (3) Figurs 5: Exemplary G-structures GM for different structure groups ¢ and on different manifolds Af. The structure group &' signals
which values 2auge transformations can take, and therefore how “big™ the subset of distinguished frames at each point p is. Fig.
shows the caronical {e}-structure (frame field) of R*, which corresponds to conventional Cuclidean CNNs, The (J-structures in
) Figs.@[gmld@ are coustucted by adding rellected (G = R), rotatd (G = SO2)) and scaled (G = &) [rames, respectively.
Co nt| NUOWULIS  The corresponding M -convolutions are not only translation equivariant but eguivarian: undar the action of affine groups Aff(C).
(' structuras are usually not unique. Figs. Sband|Se|show alternative G structures on [R? (corresponding to an alternztive metric rel

+ (S'I ative to which their frames arc orthonormal). They might not be pracucally relovant but demonstrate the ficxibility of our framework.
11 1 The {&}-struchme in Fig.c:nm:x]lnulx to palar conrdinates. As Gestruchures are requires] 1o be continuous, we removed the orgin 0
; * : where polar coordinates are singular. One can once again define an (R-structure by adcing reflected frames as shown in Fig These

: flip (' structurss model convolutions on K {0} which are SO[2) and O(2) equivancnt but not translation equivanant. Fig.|Sh shows
th= usnal 50)(2)-stmacture on the emhbedded 2-sphere 52, which is urderlying SO(3)-equivariant spherical CNNs. Another popular
choles is lhe <e}-sloucture o Fig. Sk which is induced by spherical coordinates. Note that this {e}-structure would be singular at
th= poles, which zre therefore cut out. Continuous (i.2. non-singular) reductions of the stwucture group bayond SO(2) are on the
spherz topologically cbstructed. ' steerable keme!ls with G > SQO[2) zre therzfore strictly nacessary for continuous convolutions an
topological spheres like the mesh in Fiz. 51 Flg.@ shows an R -structurc cn the Mobius saip. As the Mobius strip 1s non-oricntable,
it does nol admit a comtinuous reduction of the stucture group beyoud the reflection group & = R.
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Thomas et al. 2018 Riemannian Hom. spaces |
SE(3) Weiler-Cesa 2019 Sosnovik et al. 2020
SE(2) Scale-translation
Continuous rotation G-CNNs Continuous G-CNNs
(steerable) (Lie groups)

Cesa-Lang-Weiler 2022
G = RY % H with H compact

https://quva-lab.github.io/escnn/
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A brief history of G-CNNs

Up next:

A linear map Is equivariant
it and only if it Is a group convolution

NNs CNNs G-CNNs

O N

G-CNNs are NNs under
equivariance constraints “Inductive bias”

Reduce the search space for NNs

to only the sensible ones!



