

Group Equivariant Deep Learning Lecture 1 - Regular group convolutions Lecture 1.2 - Group Theory | The basics

Preliminaries for regular group convolutions

Groups, group product, inverse, action, representation, affine groups $G = \mathbb{R}^d \rtimes H$

Erik Bekkers, Amsterdam Machine Learning Lab, University of Amsterdam This mini-course serves as a module with the UvA Master AI course Deep Learning 2 https://uvadl2c.github.io/

What is a group?

binary operator, that satisfies the following four axioms:

- **Closure**: Given two elements g and h of G, the product $g \cdot h$ is also in G.
- Associativity: For $g, h, i \in G$ the product \cdot is associative, i.e., $g \cdot (h \cdot i) = (g \cdot h) \cdot i$.
- **Identity element**: There exists an identity element $e \in G$ such that $e \cdot g = g \cdot e = g$ for any $g \in G$.
- Inverse element: For each $g \in G$ there exists an inverse element $g^{-1} \in G$ s.t. $g^{-1} \cdot g = g \cdot g^{-1} = e.$

A group (G, \cdot) is a set of elements G equipped with a group product \cdot , a

The translation group consists of all possible translations in \mathbb{R}^2 and is equipped with the group product and group inverse:

with $g = (\mathbf{x}), g' = (\mathbf{x}')$ and $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^2$.

$$g \cdot g' = (\mathbf{x} + \mathbf{x}')$$
$$g^{-1} = (-\mathbf{x})$$

Roto-ranslation group SE(2)

The group $SE(2) = \mathbb{R}^2 \rtimes SO(2)$ consists of the coupled space $\mathbb{R}^2 \times S^1$ of translations vectors in \mathbb{R}^2 , and rotations in SO(2) (or equivalently orientations in S^1), and is equipped with the group product and group inverse:

$$g \cdot g' = (\mathbf{x}, \mathbf{R}_{\theta}) \cdot (\mathbf{x}', \mathbf{R}_{\theta'}) = (\mathbf{R}_{\theta}\mathbf{x}' + \mathbf{x}, \mathbf{R}_{\theta+\theta'})$$

$$g^{-1} = (-\mathbf{R}_{\theta}^{-1}\mathbf{x}, \mathbf{R}_{\theta}^{-1})$$
roto-translate by g
roto-translate by g'
roto-translate by $g \cdot g'$

with $g = (\mathbf{x}, \mathbf{R}_{\theta}), g' = (\mathbf{x}', \mathbf{R}_{\theta})$

2D Special Euclidean

Roto-ranslation group SE(2)

Matrix representation: The group can also be represented by matrices

$$g = (\mathbf{x}, \mathbf{R}_{\theta}) \quad \leftrightarrow \quad \mathbf{G}$$

with the group product and inverse simply given by the matrix product and matrix inverse.

In parametric form:

(X,

In matrix form:

2D Special Euclidean motion group

$$= \begin{pmatrix} \cos \theta & -\sin \theta & x \\ \sin \theta & \cos \theta & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{R}_{\theta} & \mathbf{x} \\ \mathbf{0}^T & 1 \end{pmatrix}$$

$$\theta) \cdot (\mathbf{x}', \theta') = (\mathbf{R}_{\theta} \mathbf{x}' + \mathbf{x}, \theta + \theta' \mod 2\pi)$$

$$\leftrightarrow$$

$$\begin{pmatrix} \mathbf{R}_{\theta}' & \mathbf{x}' \\ \mathbf{0}^T & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{R}_{\theta + \theta'} & \mathbf{R}_{\theta} \mathbf{x}' + \mathbf{x} \\ \mathbf{0}^T & 1 \end{pmatrix}$$

Scale-translation group $R^2 \rtimes \mathbb{R}^+$

factors in \mathbb{R}^+ , and is equipped with the group product and group inverse:

$$g \cdot g' = (\mathbf{x}, s) \cdot (\mathbf{x}', s') = (s\mathbf{x}' + \mathbf{x}, ss')$$
$$g^{-1} = \left(-\frac{1}{s}\mathbf{x}, \frac{1}{s}\right)$$

with g = (x, s), g' = (x', s').

with $g \cdot g^{-1} = e = (0, 1)$ matrix repr: $\mathbf{G} = \begin{pmatrix} \mathbf{I}_s & \mathbf{X} \\ \mathbf{O}_T & \mathbf{I} \end{pmatrix}$

The scale-translation group of space $\mathbb{R}^2 \times \mathbb{R}^+$ of translations vectors in \mathbb{R}^2 and scale/dilation

Affine groups $G = \mathbb{R}^d \rtimes H$

Affine groups are semi-direct product groups of some group H with an action on \mathbb{R}^d from which we derive the following group product and inverse

 $g \cdot g' = (\mathbf{x})$

 $g^{-1} = (-$

with group elements $g = (\mathbf{x}, h), g' = (\mathbf{x}', h')$.

transform/shift sub-group

$$(\mathbf{x}, h) \cdot (\mathbf{x}', h') = (h \cdot \mathbf{x}' + \mathbf{x}, h \cdot h')$$

Transform point + shift point

$$-h^{-1}\cdot\mathbf{x},h^{-1}$$

Psychology of vision: recognition by components

Ħ

Low-level features (e.g. local surfaces)

features can appear at arbitrary locations, angles, and scales

Low-level features arranged at relative angles and displacements form *mid-level features*

Mid-level features (e.g. vessel segments)

Mid-level features arranged at relative angles and displacements form high-level features such as bifurcations

The translation group consists of all possible translations in \mathbb{R}^2 and is equipped with the group product and group inverse:

with $g = (\mathbf{x}), g' = (\mathbf{x}')$ and $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^2$.

 $g \cdot g' = (\mathbf{x} + \mathbf{x}')$ $g^{-1} = (-\mathbf{x})$

The translation group consists of all possible translations in \mathbb{R}^2 and is equipped with the group product and group inverse:

with $g = (\mathbf{x}), g' = (\mathbf{x}')$ and $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^2$.

 $g \cdot g' = (\mathbf{x} + \mathbf{x}')$ $g^{-1} = (-\mathbf{x})$

The translation group consists of all possible translations in \mathbb{R}^2 and is equipped with the group product and group inverse:

with $g = (\mathbf{x}), g' = (\mathbf{x}')$ and $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^2$.

 $g \cdot g' = (\mathbf{x} + \mathbf{x}')$ $g^{-1} = (-\mathbf{x})$

Roto-ranslation group SE(2)

The group $SE(2) = \mathbb{R}^2 \rtimes SO(2)$ consists of the coupled space $\mathbb{R}^2 \times S^1$ of translations vectors in \mathbb{R}^2 , and rotations in SO(2) (or equivalently orientations in S^1), and is equipped with the group product and group inverse:

2D Special Euclidean motion group

$$\mathbf{x}', \mathbf{R}_{\theta'}) = (\mathbf{R}_{\theta}\mathbf{x}' + \mathbf{x}, \mathbf{R}_{\theta+\theta'})$$
$$\mathbf{R}_{\theta}^{-1})$$

Roto-ranslation group SE(2)

The group $SE(2) = \mathbb{R}^2 \rtimes SO(2)$ consists of the coupled space $\mathbb{R}^2 \times S^1$ of translations vectors in \mathbb{R}^2 , and rotations in SO(2) (or equivalently orientations in S^1), and is equipped with the group product and group inverse:

2D Special Euclidean motion group

Set of points (group elements)

Convolution kernel

Set of points (group elements)

 $\{g_1, g_2, \dots\} \subset G = (\mathbb{R}^2, +)$

"A collection of parts in certain poses"

Convolution kernel

Set of points (group elements)

 $\{g_1, g_2, \dots\} \subset G = (\mathbb{R}^2, +)$

"A collection of parts in certain poses"

Convolution kernel

 $k \in \mathbb{L}_2(\mathbb{R}^2)$

"Assigning weights to relative poses"

Set of points (group elements)

 $\{g_1, g_2, \dots\} \subset G = (\mathbb{R}^2, +)$

"A collection of parts in certain poses"

Transforms via group product

Convolution kernel

 $k \in \mathbb{L}_2(\mathbb{R}^2)$

"Assigning weights to relative poses"

Set of points (group elements)

 $\{g_1, g_2, \dots\} \subset G = (\mathbb{R}^2, +)$

"A collection of parts in certain poses"

Transforms via group product

Convolution kernel

 $k \in \mathbb{L}_2(\mathbb{R}^2)$

"Assigning weights to relative poses"

Transforms via group representations

general linear group GL(V).

That is $\rho(g)$ is a linear transformation that is parameterized by group elements $g \in G$ that transforms some vector $v \in V$ (e.g. an image) such that

A representation $\rho: G \to GL(V)$ is a group homomorphism from G to the

 $\rho(g') \circ \rho(g)[\mathbf{v}] = \rho(g' \cdot g)[\mathbf{v}]$

general linear group GL(V).

 $g \in G$ that transforms some vector $v \in V$ (e.g. an image) such that

A representation $\rho: G \to GL(V)$ is a group homomorphism from G to the

- That is $\rho(g)$ is a linear transformation that is parameterized by group elements
 - $\rho(g') \circ \rho(g)[\mathbf{v}] = \rho(g' \cdot g)[\mathbf{v}]$

general linear group GL(V).

 $g \in G$ that transforms some vector $v \in V$ (e.g. an image) such that

A representation $\rho: G \to GL(V)$ is a group homomorphism from G to the

- That is $\rho(g)$ is a linear transformation that is parameterized by group elements
 - $\rho(g') \circ \rho(g)[\mathbf{v}] = \rho(g' \cdot g)[\mathbf{v}]$

$\rho(g')[\rho(g)[\mathbf{v}]] \bigg/$

general linear group GL(V).

That is $\rho(g)$ is a linear transformation that is parameterized by group elements $g \in G$ that transforms some vector $v \in V$ (e.g. an image) such that

 $\rho(g') \circ \rho(g)[\mathbf{v}] = \rho(g' \cdot g)[\mathbf{v}]$

A representation $\rho: G \to GL(V)$ is a group homomorphism from G to the

A representation $\rho: G \to GL(V)$ is a group homomorphism from G to the general linear group GL(V).

That is $\rho(g)$ is a linear transformation that is parameterized by group elements $g \in G$ that transforms some vector $v \in V$ (e.g. an image) such that

 $\rho(g') \circ \rho(g)[\mathbf{v}] = \rho(g' \cdot g)[\mathbf{v}]$

A left-regular representation \mathcal{L}_g is a representation that transforms functions f by transforming their domains via the inverse group action

 $\mathscr{L}_g[f](x) := f(g^{-1} \cdot x)$

Example:

 $f \in \mathbb{L}_2(\mathbb{R}^2)$ - a 2D image

G = SE(2)- the roto-translation group

 $\mathscr{L}_{g}(f)(\mathbf{y}) = f(\mathbf{R}_{\theta}^{-1}(\mathbf{y} - \mathbf{x}))$ - a roto-translation of the image

transforming their domains via the inverse group action

A left-regular representation \mathscr{L}_{g} is a representation that transforms functions f by

 $\mathscr{L}_{g}[f](x) := f(g^{-1} \cdot x)$

Example:

 $f \in \mathbb{L}_2(\mathbb{R}^2)$ - a 2D image

G = SE(2)- the roto-translation group

 $\mathscr{L}_{g}(f)(\mathbf{y}) = f(\mathbf{R}_{\theta}^{-1}(\mathbf{y} - \mathbf{x}))$ - a roto-translation of the image

transforming their domains via the inverse group action

A left-regular representation \mathscr{L}_{g} is a representation that transforms functions f by

Example:

 $f \in \mathbb{L}_2(\mathbb{R}^2)$ - a 2D image

G = SE(2)- the roto-translation group

 $\mathscr{L}_g(f)(\mathbf{y}) = f(\mathbf{R}_{\theta}^{-1}(\mathbf{y} - \mathbf{x}))$ - a roto-translation of the image

transforming their domains via the inverse group action

A left-regular representation \mathscr{L}_{g} is a representation that transforms functions f by

 $\mathscr{L}_{g}[f](x) := f(g^{-1} \cdot x)$

Example:

 $f \in \mathbb{L}_2(\mathbb{R}^2)$ - a 2D image

G = SE(2)- the roto-translation group

 $\mathscr{L}_g(f)(\mathbf{y}) = f(\mathbf{R}_{\theta}^{-1}(\mathbf{y} - \mathbf{x}))$ - a roto-translation of the image

transforming their domains via the inverse group action

A left-regular representation \mathscr{L}_{g} is a representation that transforms functions f by

 $\mathscr{L}_{g}[f](x) := f(g^{-1} \cdot x)$

Group product (the action on G)

Group product (the action on G)

g · *g*′

Left regular representation (the action on $\mathbb{L}_2(X)$)

Group product (the action on G)

g · *g*′

Left regular representation (the action on $\mathbb{L}_2(X)$)

 $g \odot \mathbf{X}$

Group action (the action on \mathbb{R}^d)

gx

Group product (the action on G)

g · *g*' *gg*'

Left regular representation (the action on $\mathbb{L}_2(X)$)

$\mathscr{L}_{g}f$ gf

Group action (the action on \mathbb{R}^d)

 $g \odot \mathbf{X}$

Equivariance is a property of an operator $\Phi: X \to Y$ (such as a neural network layer) by which it commutes with the group action:

$$\Phi \circ \rho^X(g) = \rho^Y(g) \circ \Phi$$

group representation action on X

