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Lecture 1 - Regular group convolutions 
         Lecture 1.1 - Introduction 
      Desirable properties of neural networks, invariance, equivariance, weight-sharing

Group Equivariant Deep Learning

     Lecture 1.2 - Group Theory | The basics 
      Groups, group product, inverse, action, representation, affine groups G = ℝd ⋊ H

     Lecture 1.3 - Regular group convolutions | Template matching viewpoint 
      General group convolutional NN design with example for roto-translation equivariance ( SE(2) )

     Lecture 1.4 - SE(2) Equivariant NN Example | With histopathology images 
      Visual example for roto-translation equivariance ( SE(2) )

     Lecture 1.5 - A brief history of G-CNNs  
     

     Lecture 1.7 - Group convolutions are all you need! 
      Equivariant linear layers between feature maps are group convolutions

     Lecture 1.6 - Group Theory | Homogeneous/quotient spaces 
      Transitive action, homogeneous space, quotient space, examples
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Common approach: data-augmentation Issues:

- Still no guarantee of invariance

..

- Valuable net capacity is spend on 
learning invariance


- Redundancy in feature repr.

Example: Detection of  
pathological cells



https://distill.pub/2020/circuits/equivariance/
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Geometric guarantees (equivariance)

Normal CNN

Figures source: 
https://github.com/QUVA-Lab/e2cnn

https://github.com/QUVA-Lab/e2cnn
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Normal CNN

..

CNNs are not rotation equivariant

Figures source: 
https://github.com/QUVA-Lab/e2cnn
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Group equivariant CNN

Normal CNN

..

CNNs are not rotation equivariant

..

G-CNNs are rotation equivariant!

Figures source: 
https://github.com/QUVA-Lab/e2cnn

https://github.com/QUVA-Lab/e2cnn
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G-CNNs are not only relevant for invariant 
problems but for any type of structured data!

Importance of equivariance:


- No information is lost when the input is transformed


- Guaranteed stability to (local + global) transformations

Group convolutions:


- Equivariance beyond translations


- Geometric guarantees


- Increased weight sharing
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Geometric guarantees (equivariance)

Equivariant problem: 
N-body problem (force/velocity prediction)

Equivariant problem:

Molecule conformer generation

Invariant problem:

Molecule property prediction
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Fig from Kosiorek et al. 2019

Rationale behind capsule networks
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Group equivariant deep learning
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Create architectures with guarantees of invariance or equivariance 
(often demanded by problems)

Equivariance allows for 
increased weight sharing

Psychology of vision 
(recognition by components)

Efficient representation learning 
(leverage symmetries)


