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Group equivariant deep learning


Geometric deep learning
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Lecture notes, slides and exercises available at


https://uvagedl.github.io 
group equivariant deep learning

https://uvagedl.github.io
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Pathological

(invariance)
Why Group Convolutional Neural Networks (G-CNNs)?

Common approach: data-augmentation Issues:

- Still no guarantee of invariance

..

- Valuable net capacity is spend on 
learning invariance


- Redundancy in feature repr.

Example: Detection of  
pathological cells

Solution: G-CNNs!
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Why Group Convolutional Neural Networks (G-CNNs)?

(equivariance)

G-CNNs are not only relevant for invariant 
problems but for any type of structured data!

Importance of equivariance:


- No information is lost when the input is transformed


- Guaranteed stability to (local + global) transformations

Group convolutions:


- Equivariance beyond translations


- Geometric guarantees


- Increased weight sharing
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Fig from Kosiorek et al. 2019

Rationale behind capsule networks
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Groups

A group  is a set of elements  equipped with a group product , a binary 
operator, that satisfies the following four axioms:


• Closure: Given two elements  and  of , the product  is also in .


• Associativity: For  the product  is associative, i.e., .


• Identity element: There exists an identity element  such that  for any .


• Inverse element: For each  there exists an inverse element  s.t. .

(G, ⋅ ) G ⋅

g h G g ⋅ h G

g, h, i ∈ G ⋅ g ⋅ (h ⋅ i) = (g ⋅ h) ⋅ i

e ∈ G e ⋅ g = g ⋅ e = g g ∈ G

g ∈ G g−1 ∈ G g−1 ⋅ g = g ⋅ g−1 = e

14



The translation group (ℝ2, + )
The translation group consists of all possible translations in  and is equipped with the group 
product and group inverse:


   
 


with  and .

ℝ2

g ⋅ g′ = (x + x′ )
g−1 = (−x)

g = (x), g′ = (x′ ) x, x′ ∈ ℝ2

15

translate by g
translate by g′ 

translate by g ⋅ g′ 



The roto-translation group SE(2)
The group    consists of the coupled space  of translations vectors 
in , and rotations in  (or equivalently angles in ), and is equipped with the group 
product and group inverse:


   
                                . 


with .

SE(2) = ℝ2 ⋊ SO(2) ℝ2 × S1

ℝ2 SO(2) S1

g ⋅ g′ = (x, Rθ) ⋅ (x′ , Rθ′ 
) = (Rθx′ +x, Rθ+θ′ 

)
g−1 = (−R−1

θ x, R−1
θ )

g = (x, Rθ), g′ = (x′ , Rθ′ 
)
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2D Special Euclidean motion group

roto-translate by g′ 
roto-translate by g

roto-translate by g ⋅ g′ 



The scale-translation group ℝ2 ⋊ ℝ+

The scale-translation group of space  of translations vectors in  and scale/dilation 
factors in , and is equipped with the group product and group inverse:

                                            
                                                                             . 


with .

ℝ2 × ℝ+ ℝ2

ℝ+

g ⋅ g′ = (x, s) ⋅ (x′ , s′ ) = (sx′ + x, ss′ )
g−1 = (− 1

s x, 1
s )

g = (x, s), g′ = (x′ , s′ )

17

translate and scale by g′ 
translate and scale by g

translate and scale by g ⋅ g′ 

with g ⋅ g−1 = e = (0,1)

G = (Is x
0T 1)matrix repr:
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multiply each element with  
(using group prod)

g
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Set of points (group elements) Convolution kernel

{g1, g2, …} ⊂ G = (ℝ2, + ) k ∈ 𝕃2(ℝ2)

Transforms via group product Transforms via group representations

“A collection of parts in certain poses” “Assigning weights to relative poses”
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A linear operator  that is parameterized by group elements  that 
transforms some object  (e.g. an image) is called a representation of  if it caries 
the group structure in the following way


ℒg g ∈ G
f G

ℒg′ 
(ℒg ( f )) = ℒg′ ⋅g ( f )

ℒg
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transforms some object  (e.g. an image) is called a representation of  if it caries 
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f G
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Left-regular representations
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ℒg
ℒg′ 

ℒg′ ⋅g

The left-regular representation of  transforms functions by acting on the domain 
on which they are defined via


G

ℒg( f )(y) = f(g−1 ⊙ y)

Example:


 
          - a 2D image


 
          - the roto-translation group


  
          - a roto-translation of the image

f ∈ 𝕃2(ℝ2)

G = SE(2)

ℒg( f )(y) = f(R−1
θ (y − x))

“group action” equals 
group product when 
X = G



Group actions
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Group product (the action on )


Left regular representation (the action on )


Group action (the action on )

G

𝕃2(X)

ℝd

x ∈ ℝ2

g ⊙ x

g ⋅ g′ 

ℒg f

g ⊙ x
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Group product (the action on )


Left regular representation (the action on )


Group action (the action on )

G

𝕃2(X)

ℝd

x ∈ ℝ2

g ⊙ x

g ⋅ g′ 

ℒg f

g ⊙ x

gg′ 

gf

gx
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Φ

Φ

ℒX
g ℒY

g

ℒY
g ∘ Φ = Φ ∘ ℒX

g

Equivariance

 and actions of  on  and ℒX ℒY G X Y
Φ : X → Y
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“recogition-by-components”
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Are convolutions with reflected conv kernels (and vice versa)

(k ⋆ℝ2 f )(x) = ∫ℝ2

k(x′ − x)f(x′ )dx′ = (ℒg k , f )𝕃2(ℝ2)

Representation of the translation group!

 
2D convolution kernel

k  
2D feature map

f in  
2D feature map (after ReLU)

f out

⋆ℝ2 =



Group equivariance
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Φ

Φ

ℒ(ℝ2,+)→𝕃2(ℝ2)
(x) ℒ(ℝ2,+)→𝕃2(ℝ2)

(x)

Representation of the 
translation group

(k ⋆ℝ2 f )(x) = (ℒ(ℝ2,+)→𝕃2(ℝ2)
(x) k , f )𝕃2(ℝ2)

Convolutions/cross-correlations are translation equivariant



Group equivariance
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Φ

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

Representation of the 
rotation group

(k ⋆ℝ2 f )(x) = (ℒ(ℝ2,+)→𝕃2(ℝ2)
(x) k , f )𝕃2(ℝ2)

Convolutions are generally not equivariant to roto-translations

ℒSO(2)→𝕃2(ℝ2)
g

Representation of the 
translation group
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(k ⋆̃ f )(x) = (ℒSE(2)→𝕃2(ℝ2)
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Representation of the roto-translation group!

translation rotation

Lifting correlations:

 
Rotated 2D convolution kernel

ℒSO(2)→𝕃2(ℝ2)
θ k  

2D feature map
f in  

3D (SE(2)) feature map (after ReLU)
f out

⋆ℝ2 =
θ

yx

k(R−1
θ (x′ −x))
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Rotated 2D convolution kernel
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2D feature map
f in  

3D (SE(2)) feature map (after ReLU)
f out

⋆ℝ2 =
θ

yx

k(R−1
θ (x′ −x))
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SE(2) group lifting convolutions are roto-translation equivariant

planar rotation

periodic shift

planar rotation

Φ

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆̃ f )(x) = (ℒR2→𝕃2(ℝ2)
x ℒSO(2)→𝕃2(ℝ2)

θ k , f )𝕃2(ℝ2)
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SE(2) group lifting convolutions are roto-translation equivariant

planar rotation

periodic shift

planar rotation

Φ

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆̃ f )(x) = (ℒR2→𝕃2(ℝ2)
x ℒSO(2)→𝕃2(ℝ2)

θ k , f )𝕃2(ℝ2)

What about 
subsequent layers?
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(k ⋆ f )(x) = (ℒSE(2)→𝕃2(SE(2))
g k , f )𝕃2(SE(2)) = (ℒR2→𝕃2(SE(2))

x ℒSO(2)→𝕃2(SE(2))
θ k , f )𝕃2(SE(2)

translation rotation

Group correlations:
k(R−1

θ (x′ −x),Rθ′ −θ)
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Rotated SE(2) convolution kernel

ℒSO(2)→𝕃2(SE(2)
θ k  

SE(2) feature map
f in  

SE(2) feature map (after ReLU)
f out

⋆ℝ2 = θ

yx
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SE(2) group convolutions are roto-translation equivariant

Φ

Φ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆ f )(x) = (ℒℝ2→𝕃2(SE(2))
x ℒSO(2)→𝕃2(SE(2))

θ k , f )𝕃2(SE(2))

ℒSO(2)→𝕃2(SE(2))
θ
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SE(2) group convolutions are roto-translation equivariant

Φ

Φ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆ f )(x) = (ℒℝ2→𝕃2(SE(2))
x ℒSO(2)→𝕃2(SE(2))

θ k , f )𝕃2(SE(2))

ℒSO(2)→𝕃2(SE(2))
θ
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Φ

ℒℝ2→𝕃2(ℝ2)
g ℒℝ2→𝕃2(ℝ2)

g

Φ

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

ℒSO(2)→𝕃2(SE(2))
θ

2D cross-correlation (translation equivariant)

SE(2) lifting correlations (roto-translation equivariant)

SE(2) G-correlations (roto-translation equivariant)

(k ⋆ℝ2 f )(x) = (ℒℝ2→𝕃2(ℝ2))
x k, f )𝕃2(ℝ2)

(k ⋆̃ f )(x) = (ℒSE(2)→𝕃2(ℝ2)
g k , f )𝕃2(ℝ2)

(k ⋆ f )(x) = (ℒSE(2)→𝕃2(SE(2))
g k , f )𝕃2(SE(2)

= ∫ℝ2 ∫S1

k(R−1
θ (x′ − x), θ′ − θ mod 2π)f(x′ , θ′ )dx′ 

= ∫ℝ2

k(x′ − x)f(x′ )dx′ 

= ∫ℝ2

k(R−1
θ (x′ − x))f(x′ )dx′ 

Φ

Φ

ℒSO(2)→𝕃2(SE(2))
θℒSO(2)→𝕃2(SE(2))

θ
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G-CNNs without data-augmentation  
outperform 
CNNs with data-augmentation

G-CNNs guarantee 
geometric stability. 
They are robust to 
input distortions, 
regular CNNs aren’t…

Bekkers & Lafarge et al. MICCAI 2018 Lafarge et al. MedIA 2020

G-CNNs are more sample efficient! 
G-CNNs (25% data) > CNNs (100% data)

10%

50%
25%

100%

75%

Lafarge et al. ArXiv/MedIA 2020
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From rotation to scale equivariant CNNs

42

Bekkers ICLR 2020

Translation +                              G-CNNs

2D CNN

scale equivariant

2D CNN with 
rescaled input
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G-CNNs are NNs under 
equivariance constraints

Part II:  
A linear map is equivariant 


if and only if it is agroup convolution
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Iteratively transform the vector via

xl = φ(Kwl
xl−1 + bl)

Linear map: matrix-vector multiplication with Kwl
∈ ℝNl×Nl−1



Iteratively transform the vector in  viaℝNx

y = φ(K x + bl)

Linear map: matrix-vector multiplication with 
K ∈ ℝNy×Nx

yj = ∑
i

Ki,j xi

mitotic  
figure

Iteratively transform the feature map in 𝕃2(X)

f out = φ(K f in + bl)

Linear map: kernel operator with kernel in  
𝕃1(Y, X)

(Kf )(y) = ∫X
k(y, x)f(x)dx
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Classical artificial NNs in the continuous world
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We want  to be equivariant!K
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Let’s build neural networks for signal 
data via the layers of the form:

f l+1 = σ(𝓚 f l + bl)

Neural Networks for Signal Data

51

𝓚 : 𝕃2(X)Nl → 𝕃2(Y)Nl+1

The linear map has to be an integral 
transform with a two-argument kernel 
(Dunford-Pettis theorem)

(𝓚f )(y) = ∫X
k(y, x)f(x)dx



Theorem 3.2: 
Let  map between signals on homogeneous spaces of . 


Let homogeneous space  such that  for some chosen 
origin  and let  such that .


Then  is equivariant to group  if and only if: 


             1. It is a group convolution: 


             2. The kernel satisfies a symmetry constraint:    

𝒦 : 𝕃2(X) → 𝕃2(Y) G

Y ≡ G/H H = StabG(y0)
y0 ∈ Y gy ∈ G ∀y∈Y : y = gyy0

𝒦 G

[𝒦f ](y) = ∫X
k(g−1

y x)f(x)dx

∀h∈H : k(hx) = k(x)

Lecture notes
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Group theory: Homogeneous spaces

54

Group action: An operator  such that


 

⊙ : G × X → X

∀g,g′ ∈G,x∈X : g ⊙ (g′ ⊙ x) = (gg′ ) ⊙ x

x

g′ ⊙ x
g ⊙ (g′ ⊙ x)

(gg′ ) ⊙ x



Group theory: Homogeneous spaces

55

Transitive action: An action  such that


 

⊙ : G × X → X

∀x0,x∈X ∃g∈G : x = g ⊙ x0

 acts transitively on (ℝ2, + ) ℝ2 SE(2) acts transitively on ℝ2 SO(2) does not …
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Homogeneous space: A space on  on which  acts transitively.X G

This is important as then we can guarantee that every part of 
the signal can be “seen” (probed by the convolution kernel)
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The sphere  is a homogeneous space of 3D rotations S2 SO(3)
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The sphere  is a homogeneous space of 3D rotations S2 SO(3)



Group theory: Homogeneous space  Quotient space≡
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Any quotient space is a homogeneous space

Any homogeneous space is a quotient space



Group theory: Quotient spaces
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Quotient space : The space of unique cosets . Elements 
of the space  are cosets.

G/H gH = {gh |h ∈ H}
G/H

g
gh

gh

gH = {gh |h ∈ H}
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Stabilizer:   is a subset of  that leaves  unchanged. I.e., StabG(x0) G x0
StabG(x0) = {g |gx0 = x0}

So the sphere is a quotient space


 


with


 

S2 ≡ SO(3)/H

H = StabG(ex)



Lecture notes
Theorem 3.2: 
Let  map between signals on homogeneous spaces of . 


Let homogeneous space  such that  for some chosen 
origin  and let  such that .


Then  is equivariant to group  if and only if: 


             1. It is a group convolution: 


             2. The kernel satisfies a symmetry constraint:    

𝒦 : 𝕃2(X) → 𝕃2(Y) G

Y ≡ G/H H = StabG(y0)
y0 ∈ Y gy ∈ G ∀y∈Y : y = gyy0

𝒦 G

[𝒦f ](y) = ∫X
k(g−1

y x)f(x)dx

∀h∈H : k(hx) = k(x)
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( )  
    Isotropic/Constraint convolutions on spaces of lower     
    dimension than , 


( )  
    Lifting convolution. No constraints on .


( )  
    Group convolutions. No constraints on .


  
    Projection layer. Mean pooling over .


  
    Global pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

(X = G, Y = ∅)
G

Types of layers
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Φ

ℒℝ2→𝕃2(ℝ2)
g ℒℝ2→𝕃2(ℝ2)

g

Φ

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

ℒSO(2)→𝕃2(SE(2))
θ

2D cross-correlation (translation equivariant) - K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

SE(2) lifting correlations - K : 𝕃2(ℝ2) → 𝕃2(SE(2))

(k ⋆ℝ2 f )(x) = (ℒℝ2→𝕃2(ℝ2))
x k, f )𝕃2(ℝ2)

(k ⋆̃ f )(x) = (ℒSE(2)→𝕃2(ℝ2)
g k , f )𝕃2(ℝ2)

(k ⋆̃ f )(x) = (ℒSE(2)→𝕃2(SE(2))
g k , f )𝕃2(SE(2)

= ∫ℝ2 ∫S1

k(R−1
θ (x′ − x), θ′ − θ mod 2π)f(x′ , θ′ )dx′ 

= ∫ℝ2

k(x′ − x)f(x′ )dx′ 

= ∫ℝ2

k(R−1
θ (x′ − x))f(x′ )dx′ 

Φ

Φ

ℒSO(2)→𝕃2(SE(2))
θℒSO(2)→𝕃2(SE(2))

θ

SE(2) G-correlations - K : 𝕃2(SE(2)) → 𝕃2(SE(2))

SE(2) equivariance iff


 
 




since 

(ℒSO(2)→𝕃2(ℝ2)
θ k)(x) = k(x)

⇔
k(R−1

θ x) = k(x)

Y = ℝ2 ≡ SE(2)/SO(2)

No constraints

No constraints
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The most expressive group equivariant 

architectures are obtained by lifting 


the feature maps to the group



General group equivariant architecture
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Class probability
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n 
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Fu
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nn
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d 
ou

tp
ut

 la
ye

r

Input image

    “normal” (0) 
vs 

    “mitotic” (1)

Rotation + translation equivariant

Max-pooling over rotations 
guarantees rotation invariance



Content
Part I: Introduction to group convolutions 
* Motivation

* Introduction to group theory

* Regular group convolutional neural networks

* Applications


Part II: Group convolutions are all you need 
* Theorem: Equivariant linear operators are group convolutions

* Characterization of types of group equivariant layers


Part III: Steerable group convolutions for molecular data and the N-body problem 
* Graph Neural networks 
* Irreducible representations, steerable operators and vector spaces

* Steerable Graph NNs (Point Convolutions)


66



67

Property

Graph NN

Image from https://www.qps.com/2020/04/01/selecting-a-cro-for-chronic-disease-drug-development-using-small-molecules/
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Property

Should be invariant!

Graph NN

Image from https://www.qps.com/2020/04/01/selecting-a-cro-for-chronic-disease-drug-development-using-small-molecules/
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..........

..........

..........

..........

fi

fj

vi

vj

Consider graph , with at each node  a feature 
vector  and possibly on each edge an edge attribute .

𝒢 = (𝒱, ℰ) vi
fj aij

aij
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mij = ϕm(fi, fj, aij)

f′ i = ϕf fi, ∑
j∈𝒩(i)

mij

..........

..........

..........

..........

fi

fj

vi

vj

Consider graph , with at each node  a feature 
vector  and possibly on each edge an edge attribute .

𝒢 = (𝒱, ℰ) vi
fj aij

Goal: iteratively update node features via 
message passing (Gilmer et al. 2017)

Messages

Aggregate + node updatesaij



Graph Neural Networks: Message Passing

70

mij = ϕm(fi, fj, aij)

f′ i = ϕf fi, ∑
j∈𝒩(i)

mij

..........

..........

..........

..........

fi

fj

aij

vi

vj

Consider graph , with at each node  a feature 
vector  and possibly on each edge an edge attribute .

𝒢 = (𝒱, ℰ) vi
fj aij

Goal: iteratively update node features via 
message passing (Gilmer et al. 2017)

Messages

Aggregate + node updates

mij = ϕm(fi, fj, aij)
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mij = ϕm(fi, fj, aij)

f′ i = ϕf fi, ∑
j∈𝒩(i)

mij

..........

..........

..........

..........

fj

vi

vj

Consider graph , with at each node  a feature 
vector  and possibly on each edge an edge attribute .

𝒢 = (𝒱, ℰ) vi
fj aij

Goal: iteratively update node features via 
message passing (Gilmer et al. 2017)

Messages

Aggregate + node updates

mij

aijfi
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mij = ϕm(fi, fj, aij)

f′ i = ϕf fi, ∑
j∈𝒩(i)

mij

..........

..........

..........

..........

f′ j

vi

vj

Consider graph , with at each node  a feature 
vector  and possibly on each edge an edge attribute .

𝒢 = (𝒱, ℰ) vi
fj aij

Goal: iteratively update node features via 
message passing (Gilmer et al. 2017)

Messages

Aggregate + node updates

mij

aijf′ i
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..........

..........

..........

..........

fj

Consider graph , with at each node  a feature 
vector  and possibly on each edge an edge attribute .

𝒢 = (𝒱, ℰ) vi
fj aij

Special case: Point convolutions

Messages (linear transformations based on kernel)

Aggregate + node updates (convolution + activation fn)

mij

aijfi

xi

xj

Now with node positions  (sparse feature map/point cloud)xi

mij = ϕm(fi, fj, xj − xi)

= k(xj − xi)fj

f′ i = ϕf( ∑
j∈𝒩(i)

k(xj − xi)fj )

(k ⋆ f )(xi)

( )k : ℝd → ℝNout×Nin



Graph Neural Networks: Message Passing

73

..........

..........

..........

..........

fj
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..........

..........

..........

..........

fj

Consider graph , with at each node  a feature 
vector  and possibly on each edge an edge attribute .

𝒢 = (𝒱, ℰ) vi
fj aij

Special case: Point convolutions

Messages (linear transformations based on kernel)

Aggregate + node updates (convolution + activation fn)

mij

aijfi

xi

xj

Now with node positions  (sparse feature map/point cloud)xi

mij = ϕm(fi, fj, xj − xi)

= k(xj − xi)fj

f′ i = ϕf( ∑
j∈𝒩(i)

k(xj − xi)fj )

( )k : ℝd → ℝNout×Nin

Only SE(3) equivariant when  is isotropick

f′ i = ϕf( ∑
j∈𝒩(i)

k(∥xj − xi∥)fj )

or…
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..........

..........

..........

..........

fj

Consider graph , with at each node  a feature 
vector  and possibly on each edge an edge attribute .

𝒢 = (𝒱, ℰ) vi
fj aij

Special case: Point convolutions

Messages (linear transformations based on kernel)

Aggregate + node updates (convolution + activation fn)

mij

aijfi

xi

xj

Now with node positions  (sparse feature map/point cloud)xi

mij = ϕm(fi, fj, xj − xi)

= k(xj − xi)fj

f′ i = ϕf( ∑
j∈𝒩(i)

k(xj − xi)fj )

( )k : ℝd → ℝNout×Nin

Use group convolutions!

f′ i(R) = ϕf( ∑
j∈𝒩(i)

k(R−1(xj − xi))fj )
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..........

..........

..........

..........

fj

fi

xi

xj
f̃j

f̃i

xi

xj

.......
. . f .

....................

.......
. . f .

....................

.......
. . f .

....................

.......
. . f .

....................

Instead of feature vectors fi ∈ ℝNc Work with steerable vectors , whose sub-vectors 
represent functions on  via a Fourier transform

f̃i ∈ VNc
L

SO(3)

Point cloud sparsely represents feature map 
f : ℝ3 → ℝNc

Point cloud sparsely represents steerable vector field 
 

or a regular feature map on  
 

f̃ : ℝ3 → VNc
L

ℝ3 × SO(3)
f : ℝ3 × SO(3) → ℝNc

Steerable methods for computational chemistry

f′ i(R)
SO(3)−Fourier

⟺ f̃′ i
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..........
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..........

..........

fj

fi
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xj
f̃j

f̃i

xi

xj

.......
. . f .

....................

.......
. . f .

....................

.......
. . f .

....................

.......
. . f .

....................

Instead of feature vectors fi ∈ ℝNc Work with steerable vectors , whose sub-vectors 
represent functions on  via a Fourier transform

f̃i ∈ VNc
L

SO(3)

Point cloud sparsely represents feature map 
f : ℝ3 → ℝNc

Point cloud sparsely represents steerable vector field 
 

or a regular feature map on  
 

f̃ : ℝ3 → VNc
L

ℝ3 × SO(3)
f : ℝ3 × SO(3) → ℝNc

Steerable methods for computational chemistry

f′ i(R)
SO(3)−Fourier

⟺ f̃′ i
function on SO(3) Fourier coefficients
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Brandstetter, Hesselink, van der Pol, Bekkers, Welling  Geometric and Physical 
Quantities Improve E(3) Equivariant Message Passing - arXiv:2110.02905

Molecular property 
prediction

(Spatially) sparse feature map on  ℝ3 × S2
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Brandstetter, Hesselink, van der Pol, Bekkers, Welling  Geometric and Physical 
Quantities Improve E(3) Equivariant Message Passing - arXiv:2110.02905

Molecular property 
prediction

(Spatially) sparse feature map on  ℝ3 × S2



Why steerable G-CNNs

Steerable methods are designed for groups that involve the action of : 
• Are based on a Fourier convolution theorem on 

• Avoids discretization of :


•  Numerically more precise than regular group convolutions

•  Exact equivariance

•  Flexible to non-gridded data


•  Provide a roadmap to local equivariance on arbitrary manifolds  
 through Gauge theory

SO(d)
SO(d)

SO(d)

78



Group theory: Irreducible Representations
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Matrix representations:  is a matrix parametrized by group 
elements  such that  
                                 . 

D(g) ∈ ℝd×d

g ∈ G
∀g,g′ ∈G : D(g)D(g′ ) = D(g ⋅ g′ )

Equivalence of matrix representations: Matrix representations ,  are 
equivalent if they relate via a similarity transform (  performs change of basis): 
                                           

D(g) D′ (g)
Q

D′ (g) = Q−1D(g)Q

Reducible/irreducible matrix representations: A matrix representation is called 
reducible if it can be written as: 

              D(g) = Q−1(D1(g) ⊕ D2(g))Q = Q−1 (D1(g) 0
0 D2(g)) Q



Group theory: Wigner-D Matrices
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Wigner-D matrices of type-  are the irreducible matrix representations of 
, are of dimension , and denoted with 


Wigner-D functions: each of the  components of the 
Wigner-D matrices will be refered to as type-  Wigner-D functions, 
denoted with ,  and  resp. row and column index .

l
SO(3) (2l + 1) × (2l + 1) D(l)(g)

(2l + 1) × (2l + 1)
l

D(l)
mn m n

Wigner-D matrices generalize the notion of a rotation 
matrix for the rotation of -dimensional vectors(2l + 1)



Group theory: Wigner-D Matrices
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Every representation  of  is block diagonalizable to a 
representation with Wigner-D matrices along the diagonal:

D(g) SO(3)

Steerable vectors: The -dimensional vector space on which a 
Wigner-D matrix of type  acts will be called a type  steerable vector 
space denoted with , its elements will be called steerable vectors.

(2l + 1)
l l

Vl
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f̃j

f̃i

xi

xj

.......
. . f .

....................

.......
. . f .

....................

.......
. . f .

....................

.......
. . f .

....................

Work with steerable vectors , whose sub-vectors 
represent functions on  via a spherical Fourier transform

f̃i ∈ VNc
L

S2

Point cloud sparsely represents steerable vector field 
 

or a regular feature map on  
 

f̃ : ℝ3 → VNc
L

ℝ3 × S2

f : ℝ3 × S2 → ℝNc

Steerable methods for computational chemistry

f′ i(R)
SO(3)−Fourier

⟺ f̃′ i

Instead of working with feature maps: 


               (note )


We will work with steerable feature maps:


     

ℝ3 → ℝNc ℝNc = VNc
0

ℝ3 → VN0
0 ⊕ VN1

1 ⊕ … ⊕ VNL
L

Instead of transforming the feature vectors via 
matrix vector multiplication 


      


We transform steerable vectors via the 
Clebsch-Gordan tensor product


        

W(xj − xi)fi

Y(xj − xi) ⊗W(∥xj−xi∥)
cg f̃j



Group theory: Spherical Harmonics Form Steerable Vectors

83



Group theory: Spherical Harmonics
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Spherical harmonics Y(l)
m : S2 → ℝ•Functions on the sphere


•Solutions to Laplace’s equation on 


•The  equivalent of the circular 
harmonics (1D Fourier basis)


•Form orthonormal basis for 


•Are Wigner-D functions:


      

S2

S2

𝕃2(S2)

Y(l)
m = D(l)

m0

Image: wikipedia



Group theory: Clebsch-Gordan Tensor Product
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General tensor product between two vectors:

A note on the CG tensor product
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When the inputs are steerable vectors, the tensor product is equivariant via

A note on the CG tensor product
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When the inputs are steerable vectors, the tensor product is equivariant via

A note on the CG tensor product

Rotation of the inputs
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When the inputs are steerable vectors, the tensor product is equivariant via

A note on the CG tensor product

Rotation of the inputsRotation of the output 
via some D(g)



Group theory: Clebsch-Gordan Tensor Product
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The tensor product between two steerable vectors results again in a 
steerable vector:

The resulting representation  is reducible.


The CG-product  is defined in such a way that the output is directly 
obtained in direct sum of steerable vector spaces         
                                 

D(g) = D(l2)(g) ⊗ D(l1)

⊗cg

h̃1 ⊗cg h̃2 ∈ V0 ⊕ V1 ⊕ …

A note on the CG tensor product



Group theory: Clebsch-Gordan Tensor Product
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General tensor product between two vectors:
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f̃j

f̃i

xi

xj

.......
. . f .

....................

.......
. . f .

....................

.......
. . f .

....................

.......
. . f .

....................

Work with steerable vectors , whose sub-vectors 
represent functions on  via a spherical Fourier transform

f̃i ∈ VNc
L

S2

Point cloud sparsely represents steerable vector field 
 

or a regular feature map on  
 

f̃ : ℝ3 → VNc
L

ℝ3 × S2

f : ℝ3 × S2 → ℝNc

Steerable methods for computational chemistry

f′ i(R)
SO(3)−Fourier

⟺ f̃′ i

Instead of working with feature maps: 


               (note )


We will work with steerable feature maps:


     

ℝ3 → ℝNc ℝNc = VNc
0

ℝ3 → VN0
0 ⊕ VN1

1 ⊕ … ⊕ VNL
L

Instead of transforming the feature vectors via 
matrix vector multiplication 


      


We transform steerable vectors via the 
Clebsch-Gordan tensor product


        

W(xj − xi)fi

Y(xj − xi) ⊗W(∥xj−xi∥)
cg f̃j
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Steerable Neural Networks

Steerable group convolutions on  
from a scalar feature map to (up to) 
type-  feature map

SE(3)

L

Regular  lifting convolutions:SE(3)

⇔
f̃′ (x) = ∫ℝ3

f̃(x′ ) ⊗w(∥x′ −x∥)
cg YL ( x′ − x

∥x′ − x∥ ) dx′ 

f̃′ (x, R) = ∫ℝ3

k(R−1(x′ − x)) f(x′ ) dx′ 

k(x) =
L

∑
l

l

∑
m=−l

w(l)
m (∥x∥)Y(l)

m ( x
∥x∥ )with
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Steerable Neural Networks

Steerable group convolutions on  
from a scalar feature map to (up to) 
type-  feature map

SE(3)

L

Regular  lifting convolutions:SE(3)

⇔
f̃′ (x) = ∫ℝ3

f̃(x′ ) ⊗w(∥x′ −x∥)
cg YL ( x′ − x

∥x′ − x∥ ) dx′ 

f̃′ (x, R) = ∫ℝ3

k(R−1(x′ − x)) f(x′ ) dx′ 

k(x) =
L

∑
l

l

∑
m=−l

w(l)
m (∥x∥)Y(l)

m ( x
∥x∥ )with

Generalized SO(3) convolutions with feature fields of arbitrary types  



Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch–gordan nets: a fully fourier space spherical convolutional neural network. Advances in Neural 
Information Processing Systems, 31:10117– 10126, 2018. 

ℝ3 → VN0
0 ⊕ VN1

1 ⊕ … ⊕ VNL
L
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Molecular property 
prediction
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Graph Neural Networks for Point Clouds

92

Message passing NNs mij = ϕm(fi, fj, aij)

f′ i = ϕf fi, ∑
j∈𝒩(i)

mij

Compute messages:

Aggregate and update:
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Message passing NNs mij = ϕm(fi, fj, aij)

f′ i = ϕf fi, ∑
j∈𝒩(i)

mij

Classic (isotropic) point convolutions

mij = W(∥xj − xi∥)fj

Compute messages:

Aggregate and update:
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Message passing NNs mij = ϕm(fi, fj, aij)

f′ i = ϕf fi, ∑
j∈𝒩(i)

mij

Classic (isotropic) point convolutions

mij = W(∥xj − xi∥)fj

Steerable (anisotropic) G-CNNs

mij = Wãij
(∥xj − xi∥)f̃j

:= f̃j ⊗W(∥xj−xi∥)
cg ãij

Compute messages:

Aggregate and update:
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Message passing NNs mij = ϕm(fi, fj, aij)

f′ i = ϕf fi, ∑
j∈𝒩(i)

mij

Classic (isotropic) point convolutions
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ãij

h̃i))))

With steerable MLP:



Graph Neural Networks for Point Clouds

92

Message passing NNs mij = ϕm(fi, fj, aij)

f′ i = ϕf fi, ∑
j∈𝒩(i)

mij

Classic (isotropic) point convolutions

mij = W(∥xj − xi∥)fj

Steerable (anisotropic) G-CNNs

mij = Wãij
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*Figure from Kipf et al 2018

G-CNNs

Isotropic “non-linear CNNs”

“non-linear G-CNNs”

G-CNNs outperform CNNs with isotropic kernels
“Non-linear convolutions” outperform linear convolutions

Task: Trajectory prediction N-body problem
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(Steerable) G-CNNs allow for local connectivity
isotropic convs require full connectivity in order to infer the geometry

Task: Molecular property prediction

Property

Isotropic (fully connected graph)
Isotropic (local)

Anisotropic (local)

(Scales to large proteins!!!)
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But first… A final note on representing functions with NN



Conclusion
• G-CNNs naturally arise from NNs under equivariance 

constraints

• G-CNNs improve upon classic CNNs by


• Making data augmentation w.r.t. the group obsolete

• No valuable network capacity needs to be spend 

on dealing w geometry

• The added geometric structure allows to deal with 

context (recognition by components, relative poses)

• The added geometric structure enables to reach 

performances that cannot be achieved with data 
augmentation alone


• Have guaranteed geometric stability

• Can be applied to many types of signal data (not 

covered today: equivariance to Lie groups and 
gauge equivariant methods
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